Journal of Genetics

, Volume 56, Issue 2, pp 129–142 | Cite as

Production of triploidy ingasterosteus aculeatus (L)

  • H. Swarup


Polar Body Cold Shock Normal Appearance Shock Treatment Sperm Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bataillon, E. (1910). Le problème de la fécondation circonscrit par l’impregnation sans amphimixie et la parthénogenèse traumatique.Arch. Zool. Exp. Gen.,5, 101.Google Scholar
  2. Beatty, R. A. andFischberg, M. (1949). Spontaneous and induced triploidy in pre-implantation mouse eggs.Nature, Lond.,163, 807.CrossRefGoogle Scholar
  3. Beatty, R. A. andFischberg, M. (1952). Heteroploidy in Mammals. III f.s. Induction of tetraploidy in pre-implantation mouse eggs.J. Genet.,50, 471–479.Google Scholar
  4. Boök, J. A. (1941). Induction of triploidy in a cold treatment experiment with egg-cells of the salamanderTriton taeniatus.K. Fysiogr. Sallsk. Lund Forh.,11, 1–16.Google Scholar
  5. Boök, J. A. (1945). Cytological studies inTriton.Hereditas, Lund.,31, 177–220.CrossRefGoogle Scholar
  6. Briggs, R. (1947). The experimental production and development of triploid frog embryos.J. Exp. Zool.,106, 237–266.PubMedCrossRefGoogle Scholar
  7. Costello, D. P. (1942). Induced haploidy and triploidy in CaliforniaTriturus.Anat. Rec.,84(4), 60.Google Scholar
  8. Edwards, R. G. (1954). Colchicine induced Heteroploidy in Early Mouse Embryos.Nature, Lond.,174, 276–277.CrossRefGoogle Scholar
  9. Fankhauser, G. (1937a). The production and development of haploid salamander larvae.J. Hered.,28, 1–15.Google Scholar
  10. Fankhauser, G. (1937b). The development of fragments of the fertilizedTriton egg with the egg nucleus alone (“gynomerogony”).J. Exp. Zool.,75, 413–469.CrossRefGoogle Scholar
  11. Fankhauser, G. (1945). The effects of changes in chromosome number on amphibian development.Quart. Rev. Biol.,20, 20–78.CrossRefGoogle Scholar
  12. Fankhauser, G. andGodwin, D. (1948). The cytological mechanism of the triploidy inducing effect of heat on eggs of the newt,Triturus viridescens.Proc. Nat. Acad. Sci., Wash.,34, 544–551.CrossRefGoogle Scholar
  13. Fankhauser, G. andGriffiths, R. B. (1939). Induction of triploidy and haploidy in the newlTriturus viridescens, by cold treatment of unsegmented eggs.Proc. Nat. Acad. Sci., Wash.,25, 233–238.CrossRefGoogle Scholar
  14. Fankhauser, G. andHumphrey, R. R. (1942). Induction of triploidy and haploidy in axolotl eggs by cold treatment.Biol. Bull.,83, 367–374.CrossRefGoogle Scholar
  15. Fankhauser, G. andWatson, R. C. (1942). Heat induced triploidy in the newt,Triturus viridescens.Proc. Nat. Acad. Sci., Wash.,28, 436–440.CrossRefGoogle Scholar
  16. Fischberg, M. (1944). Veränderungen der Chromosomenzahl beiTriton alpestris nach Kältebchandlung der Eier.Rev. Suisse Zool.,51, 430–436.Google Scholar
  17. Fischberg, M. (1947). Experimentelle Auslösung von Heteroploidie durch Kältebehandlung der Eicr vonTriton alpestris aus verschiedenen Populationen.Genetica,24, 1–117.Google Scholar
  18. Fischberg, M. (1948a). Experimentelle Auslösung von Heteroploidie durch Kältebehandlung der Eier vonTriton alpestris aus verschiedenen Populationen.Genetica,24, 213–329.CrossRefGoogle Scholar
  19. Fischberg, M. (1948b). Bestehen in der Ausbildung der Artmerkmale. Unterschiede zwischen denTriton palmatus ♀ undTriton alpestris ♂.Rev. Suisse Zool.,55, 304–310.Google Scholar
  20. Fischerg, M. andBeatty, R. A. (1952). Heteroploidy in Mammals. II f.s. Induction of triploidy in pre-implantation mouse eggs.J. Genet.,50, 455–470.CrossRefGoogle Scholar
  21. Gallien, L. andMuguard, H. (1950). Application de la technique des impregnations argentiques pour l’appréciation de l’hétéroploidie chezPleurodeles waltiii Michah.,C. R. Soc. Biol., Paris,144, 657–659.Google Scholar
  22. Hamilton, L. (1957). Androgenic Haploids of a Toad,Xenopus laevis.Nature, Lond.,179, 159.CrossRefGoogle Scholar
  23. Humphries A. A. jr. (1956). A study of mciosis in coclomic and oviducal oocytes ofTriturus viridesceus with particular emphasis on the origin of spontaneous polyploidy and the effects of heat shock on the first meiotic division.J. Morph.,99, 97–136.CrossRefGoogle Scholar
  24. Kasansky, W. J. (1935). Die partheuogenetische Entwicklung der Hechteier (Esox lucius)Zool. Anz.,106, 161.Google Scholar
  25. Kawamura, T. (1939). Artificial parthenogenesis in the frog I. Chromosome numbers and their relation to cleavage histories.J. Sci. Hiroshima Uni., (B, 1),6, 115–218.Google Scholar
  26. Kawamura, T. (1941a). Polyploidy in the Japanese newt,Triturus pyrrhogaster.Zool. Mag., (Tokyo),53, 550–552.Google Scholar
  27. Kawamura, T. (1941b). III Triploid frogs developed from fertilized eggs.Proc. Imp. Acad. Japan.,79, 397–408.Google Scholar
  28. Kaylor, C. T. (1940). Studies on experimental haploidy in salamander larvac. 1. Experiments with eggs of the newt,Triturus pyrrhogaster.Biol. Bull.,79, 397–408.CrossRefGoogle Scholar
  29. Lestage, J. A. (1934). Notes de limnobiologie. V. L’industrialisation de la parthénogénèse artificiellc chez l’agone (Clupeidae:Paralosa lacustris lariana Pir).Ann. Soc. Zool. Belg.,64, 69.Google Scholar
  30. Makino, S. andOzima, Y. (1943). Formation of the diploid egg nucleus due to suppression of the second maturation division, induced by refrigeration of eggs of the carp,Cyprinus carpio.Cytologia, Tokyo,13, 55–60.Google Scholar
  31. Parmenter, C. L. (1933). Haploid, diploid, triploid and tetraploid chromosome numbers and their origin in parthenogenetically developed larvae and frogs ofRana pipiens andRana palustris.J. Exp. Zool.,66, 409–453.CrossRefGoogle Scholar
  32. Pincus, G. andShapiro, (1940). Further studies on the parthenogenetic activation of rabbit eggs.Proc. Nat. Acad. Sci. Wash.,26, 163–165.CrossRefGoogle Scholar
  33. Rostand, J. (1934). Gynogénèse du crapaud par refroidissement de l’ocuf.C. R. Soc. Biol., Paris,115, 1680–1681.Google Scholar
  34. Rostand, J. (1938). La Parthénogénèse des vertebrés.Act. Sci. Industr. No. 651, Paris.Google Scholar
  35. Sanada, M. (1951). The occurrence of tetraploidy in the Japanese newtTriturus pyrrhogaster, by cold treatment offertilized eggs.J. Sci. Hiroshima Univ., (B, 1),12, 35–37.Google Scholar
  36. Spurway, H. (1953). Spontaneous Parthenogenesis in a Fish.Nature, Lond.,171, 437.CrossRefGoogle Scholar
  37. Spurway, H. (1957). Hermaphroditism with self-fertilization, and the monthly extrusion of unfertïlized eggs, in the viviparous fishLebistes reticulatus.Nature, Lond.,180, 1248–1251.CrossRefGoogle Scholar
  38. Smith, S. (1958). Induction of Triploidy in the South African Clawed Frog,Xenopus laevis. (Daudin).Nature, Land.,181, 290.CrossRefGoogle Scholar
  39. Svardson, G. (1945). Chromosome studies on Salmonidae.Medd. Undersokn Anst. Satvattensfisk. Stockh.,23, 1–151.Google Scholar
  40. Swarup, H. (1956). Production of Heteroploidy in the Three-Spined SticklebackGasterosteus aculeatus (L).Nature, Lond.,178, 1124–1125.CrossRefGoogle Scholar
  41. Tyler, A. (1941). Artificial parthenogenesis.Biol. Rev.,16, 291–336.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1959

Authors and Affiliations

  • H. Swarup
    • 1
  1. 1.From the Department of Zoology and Comparative AnatomyUniversity MuseumOxford

Personalised recommendations