Advertisement

KSME International Journal

, Volume 17, Issue 1, pp 97–104 | Cite as

Modal interactions in an autoparametric vibration absorber to narrow band random excitation

  • Duk Sang Cho
  • Chang Ki Mo
  • Gab Su Ban
  • Kwang Ho Lee
Article
  • 129 Downloads

Abstract

The main objectives of this study are to examine the random responses of a vibration absorber system with autoparametric coupling in the neighborhood of internal resonance subjected to narrow band random excitation by Gaussian closure scheme and to compare the results with those obtained by Monte Carlo simulation. The Monte Carlo simulation is found to support the main features of the nonlinear modal interaction in the neighborhood of internal resonance conditions. The jump phenomenon of the cantilever mode and saturation phenomenon of the main system are shown to occur if the excitation bandwidth is sufficiently small.

Key Words

Internal Resonance Autoparametric Vibration Absorber Narrow Band Random Excitation Gaussian Closure Scheme Jump Saturation Phenomenon Monte Carlo Simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cho, D. S. and Lee. W. K., 2000, “Modal Interactions of a Randomly Excited Hinged-Clamped Beam,”Journal of Sound & Vibration, Vol. 237, No. 3, pp. 377–393.CrossRefGoogle Scholar
  2. Haxton, R. S. and Barr, A. D. S., 1972, “The Autoparametric Vibration Absorber,”ASME Journal of Engineering for Industry, Vol. 94, pp. 119–125.Google Scholar
  3. Ibrahim, R. A. and Li, W., 1988, “Structural Modal Interaction with Combination Internal Resonance under Wide-Band Random Excitation, ”Journal of Sound & Vibration, Vol. 123, No. 3, pp. 473–495.CrossRefGoogle Scholar
  4. Ibrahim, R. A. and Roberts, J. W., 1976, “Broad Band Random Excitation of a Two-De-gree-of-Freedom System with Autoparametric Coupling,”Journal of Sound & Vibration. Vol. 44, No. 3, pp. 335–348.MATHCrossRefGoogle Scholar
  5. Ibrahim, R. A. and Roberts, J. W., 1977, “Stochastic Stability of the Stationary Response of a System with Autoparametric Coupling,”Zeitschrift für Angewandte Mathematik and Mechanik, Vol. 57. pp. 643–649.MATHCrossRefMathSciNetGoogle Scholar
  6. Ibrahim, R. A., 1995, “Recent Results in Random Vibrations of Nonlinear Mechanical Systems, ”ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 117, pp. 222–233.CrossRefGoogle Scholar
  7. Ibrahim, R. A., 1991, “Nonlinear Random Vibration: Experimental Results,”Applied Mechanics Review, Vol. 44, pp. 423–446.Google Scholar
  8. Lee. W. K. and Cho, D. S, 1998, “Influence of Internal Resonance on Responses of a Spring-Pendulum System under Broad Band Random Excitatiom,”Journal of KSNVE, Vol. 8, No. 3, pp. 399–407.Google Scholar
  9. Lee. W. K. and Cho, D. S., 2000, “Damping Effect of a Randomly Excited Autoparametric System,”Journal of Sound & Vibration, Vol. 236, No. 1, pp. 23–31.CrossRefGoogle Scholar
  10. Lee. W. K. and Hsu, C. S., 1994, “A Global Analysis of an Harmonically Excited Spring-Pendulum System with Internal Resonance,”Journal of Sound & Vibration, Vol. 171, No. 3, pp. 335–359.CrossRefMathSciNetGoogle Scholar
  11. Li, W. and Ibrahim, R. A., 1990, “Monte Carlo Simulation of Coupled Nonlinear Oscillators under Random Excitations,”ASME Journal of Applied Mechanics, Vol. 57, pp. 1097–1099.CrossRefGoogle Scholar
  12. Lin, Y. K. and Cai, G. Q., 1995,Probabilistic Structural Dynamics Advanced Theory and Application, McGraw-Hill, Inc.Google Scholar
  13. Minorsky, N., 1962,Nonlinear Oscillations, Princeton: Roberty E. Krieger.MATHGoogle Scholar
  14. Nayfeh, A. H. and Mook, D. T., 1979,Nonlinear Oscillation, Wiley-Interscience.Google Scholar
  15. Roberts. J. W.. 1980, “Random Excitation of a Vibratory System with Autoparametric Interaction, “Journal of Sound & Vibration, Vol. 69. No. 1, pp. 101–116.CrossRefGoogle Scholar
  16. Shinozuka, M. and Deodatis, G., 1991, “Simulation of Stochastic Processes by Spectral Representation, “Applied Mechanics Review, Vol. 44. pp. 191–204.MathSciNetCrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers (KSME) 2003

Authors and Affiliations

  • Duk Sang Cho
    • 1
  • Chang Ki Mo
    • 1
  • Gab Su Ban
    • 1
  • Kwang Ho Lee
    • 1
  1. 1.School of Mechanical EngineeringSangju National UniversitySangju,KyungbukKorea

Personalised recommendations