Advertisement

KSME International Journal

, Volume 18, Issue 8, pp 1271–1287 | Cite as

Vapor Bubble Nucleation: A Microscopic Phenomenon

  • Ho-Young Kwak
Invited Review Article
  • 202 Downloads

Abstract

In this article, vapor bubble nucleation in liquid and the evaporation process of a liquid droplet at its superheat limit were discussed from the viewpoint of molecular clustering (molecular cluster model for bubble nucleation). For the vapor bubble formation, the energy barrier against bubble nucleation was estimated by the molecular interaction due to the London dispersion force. Bubble nucleation by quantum tunneling in liquid helium under negative pressure near the absolute zero temperature and bubble nucleation on cavity free micro heaters were also presented as the homogenous nucleation processes.

Key Words

Evaporation Molecular Cluster Quantum Tunneling Superheat Limit Tensile Strength Vapor Bubble 

Nomenclature

As

Surface area of heater

dm

Average distance between molecules

Dn

Rate of molecules striking on the surface of n-mer cluster

dw

Van der Waals’ diameter of liquid molecules

EI

Ionization potential

Fn

Free energy needed to form n-mer cluster

Fr

Free energy needed to form a bubble with radius of r

ħ

Plank constant

j

Nucleation probability, Eq. (19)

J

Nucleation rate of bubble per unit volume

Jn

Nucleation rate of n-mer cluster per unit volume

Js

Nucleation rate per unit area

kB

Boltzman constant

m

Mass of molecule

M

Molecular weight

m

Nmber of molecules in a cluster

N

Nmber density ( = ρm/m)

Pe

Pressure inside a bubble

Pυ

Vapor pressure

P

Ambient pressure

γ

Radius of bubble

R

Gas constant

Rd

Radius of evaporated sphere in the droplet

T

Temperature of liquid

Tc

Critical temperature

Tf

Melting temperature of liquid

tl

Time lag of nucleation events

Ts

Superheat limit of liquid

V

Volume of a droplet

υ

Molar volume of liquid

Vm

Effective molecular volume of liquid

Z

Coordination number

Zf

Zeldovich nonequilibrium factor

Greek letters

α

Polarizability of a liquid molecule

β

Accommodation coefficient

ΔHυap

Enthalpy of evaporation

Δf

Enthalpy of fusion

ε0

Potential parameter of the London dispersion attraction

εm

Energy needed to separate a pair of molecules

ευib

Vibrational energy

μ

Chemical potential

ρm

Density of liquid

ρc

Critical density of liquid

σ

Interfacial tension

τ

Tensile strength of liquid

ω

Tunneling frequency

Subscript

C

Critical cluster or critical size bubble

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham B. M., Eckstein Y., Kotterson J. B., Kuchnir M., and Roach P. R., 1970, “Velocity of Sound, Density and Griierisen Constant in Liquid4He,”Phys. Rev. A, Vol. 1, pp. 250–257.CrossRefGoogle Scholar
  2. Avedisian, C. T., 1982, “Effect of Pressure on Bubble Growth Within Liquid Droplet at the Superheat Limit,” ASMEJ. Heat Transfer, Vol. 104, pp. 750–757.Google Scholar
  3. Avedisian, C. T., 1998, “Modeling Homogeneous Bubble Nucleation in Liquids,” In Modeling of Engineering Heat Transfer Phenomena, Chap. 11, London: Computational Mechanics.Google Scholar
  4. Avedisian, C. T., Osborne, W. S., McLoed, F. E., and Curley, C. M., 1999, “Measuring Bubble Nucleation Temperature on the Surface of a Rapidly Heated Thermal Inkjet Heater Immersed in a Pool of Water,”Proc. R. Soc. Lond. A, Vol. 455, pp. 3875–3899.CrossRefGoogle Scholar
  5. Beams, J. W., 1959, “Tensile Strength of Liquid Argon, Helium, Nitrogen, and Oxygen,”Phys. Fluids, Vol. 2, pp. 1–4.CrossRefGoogle Scholar
  6. Byun, K., and Kwak, H., 2004, “A Model of Laser-Induced Cavitation,”Jpn. J. Appl. Phys., Vol. 43, pp. 621–630.CrossRefGoogle Scholar
  7. Blander, M., Hengstenberg, D., and Katz, J. L., 1971, “Bubble Nucleation in n-Pentane,n - Hexane,n -Pentane+Hexadecane Mixtures, and Water,”J. Phys. Chem., Vol. 75, pp. 3613–3619.CrossRefGoogle Scholar
  8. Blander, M., and Katz, J. L., 1975, “Bubble Nucleation in Liquids,”AIChE J., Vol. 21, pp. 833–848.CrossRefGoogle Scholar
  9. Briggs, L. J., 1950, “Limiting Negative Pressure of Water,”J. Appl. Phys., Vol. 21, pp. 721–722.CrossRefGoogle Scholar
  10. Briggs, L. J., 1951, “The Limiting Negative Pressure of Acetic Acid, Benzene, Aniline, Carbon Tetrachloride, and Chloroform,”J. Chem. Phys., Vol. 19, pp. 970–972.CrossRefGoogle Scholar
  11. Briggs, L. J., 1955, “Maximum Superheating of Water as a Measure of Negative Pressure,”J. Appl. Phys., Vol. 26, pp. 1001–1003.CrossRefGoogle Scholar
  12. Buckle, E. R., 1968, “A Kinetic Theory of Cluster Formation in the Condensation of Gases,”Trans. Faraday Soc, Vol. 65, pp. 1267–1288.CrossRefGoogle Scholar
  13. Chudnovsky E. M., 1992, “Phase Transitions in the Problem of the Decay of a Metastable State,”Phys. Rev. A., Vol. 46, pp. 8011–8014.CrossRefGoogle Scholar
  14. Doering, W., 1937, “Die Ueberhitzungsgrenze und Zereissfestigkeit von Fluessigkeiten,”Z. Physikal Chem., B., Vol. 36, pp. 371–386.Google Scholar
  15. Doering, W., 938, “Berichtigung zu der Arbeit ; Die Ueberhitzungsgrenze und Zereissfestigkeit von Fluessigkeiten,”Z. Physikal Chem., B., Vol. 38, pp. 292–2941.Google Scholar
  16. Eberhart, J. G., Kremsner, W., and Blander, M., 1975, “Metastability Limits of Superheated Liquids,”J. Colloid Interface Sci., Vol. 50, pp. 369–378.CrossRefGoogle Scholar
  17. Eberhart, J. G., and Schnyders, H. C., 1973, “Application of the Mechanical Stability Condition to the Prediction of the Limit of Superheat for Normal Alkanes, Ether, and Water,”J. Phys. Chem., Vol. 77, pp. 2730–2736.CrossRefGoogle Scholar
  18. Faber, T. E., 1972, “Introduction to the Theory of Liquid Metals,” Cambridge University Press, United Kingdom.Google Scholar
  19. Farkas, L., 1927, “Keimbildungsschwindigkeit in Uebersaetingten Daempfen,”Z. Phisikal Chem., Vol. 125, pp. 236–242.Google Scholar
  20. Feder, J., Russel, K. C., Lothe, J., and Pound, G. M., 1966, “Homogeneous Nucleation and Growth of Droplets in Vapors,”Adv. Phys., Vol. 15, pp. 111–178.CrossRefGoogle Scholar
  21. Feynman, R. P., 1972, “Statistical Mechanics,” Benjamin, New York, pp. 125–126.Google Scholar
  22. Fisher, J. C., 1948, “The Fracture of Liquids,”J. Appl. Phys., Vol. 19, pp. 1062–1067.CrossRefGoogle Scholar
  23. Fowkes, F. M., 1963, “Additivity of Intermolecular Forces at Interfaces,”J. Phys. Chem., Vol. 66, pp. 2538–2541.CrossRefGoogle Scholar
  24. Fowkes, F. M., 1964, “Attractive Forces at Interfaces,”Ind. and Eng. Chem., Vol. 56, pp. 40–52.CrossRefGoogle Scholar
  25. Frenkel, J., 1946, “Kinetic Theory of Liquids,” Oxford University Press, United Kingdom, p. 392.MATHGoogle Scholar
  26. Hemmingsen, E. A., 1977, “Spontaneous Formation of Bubble in Gas Supersaturated Water,”Nature, Vol. 267, pp. 141–142.CrossRefGoogle Scholar
  27. Hirschfelder, J. O., Curtis, C. F., and Bird, R. B., 1954,Molecular Theory of Gases and Liquids, Wiley, New York, Chap. 13.MATHGoogle Scholar
  28. Hirth, J. P., and Pound, G. M., 1963,Condensation and Evaporation, Pergamon.Google Scholar
  29. Itzykson, C., Zuber, J. B., 1980,Quantum Field Theory, McGraw-Hill, New-York.Google Scholar
  30. Jarvis, T. J., Donohue, M. D., and Katz, J. L., 1975, “Bubble Nucleation Mechanism of Liquid Droplets,”J. Colloid Interface Sci., Vol. 50, pp. 359–368.CrossRefGoogle Scholar
  31. Judd, R. L., and Hwang, K. S., 1976, “A Comprehensive Model for Nucleate Pool Boiling Heat Transfer Including Microlayer Evaporation,” ASMEJ. Heat Transfer, Vol. 98, pp. 623–629.Google Scholar
  32. Jung, J., Lee, J., Park, H., and Kwak, H., 2003, “Bubble Nucleation on Micro line Heaters Under Steady or Finite Pulse of Voltage Input,”Int. J. Heat Mass Transfer, Vol. 46, pp. 3897–3907.CrossRefGoogle Scholar
  33. Kenrick, F. B., Gilbert, C. S., and Wismer, K. L., 1924, “The Superheating of Liquids,”J. Phys. Chem., Vol. 28, pp. 1297–1307.CrossRefGoogle Scholar
  34. Kwak, H., 1990, “Homogeneous Bubble Nucleation,” InSome Unanswered Questions in Fluid Mechanics ed. By L. M. Trefethen and R. L. Panton,Appl. Mech. Rev., Vol.43, pp. 164–165.Google Scholar
  35. Kwak, H., Jung, J., and Hong, J., 2002, “Quantum Nucleation of Bubbles in Liquid Helium near the Absolute Zero Temperature,”J. Phys. Soc. Jpn., Vol. 71, No. 9, pp. 2186–2191.CrossRefGoogle Scholar
  36. Kwak, H., and Lee, S., 1991, “Homogeneous Bubble Nucleation Predicted by a Molecular Interaction Model,” ASMEJ. Heat Transfer, Vol. 113, pp. 714–721.CrossRefGoogle Scholar
  37. Kwak, H., and Oh, S., and Park, C., 1995, “Bubble Dynamics on the Evolving Bubble Formed from the Droplet at the Superheat Limit,”Int. J. Heat Mass Transfer, Vol. 38, pp. 1709–1718.MATHCrossRefGoogle Scholar
  38. Kwak, H., and Panton, R. L., 1983, “Gas Bubble Formation in Nonequilbrium Water-Gas Solutions,”J. Chem. Phys., Vol. 78, pp. 5795–5799.CrossRefGoogle Scholar
  39. Kwak, H., and Panton, R. L., 1985, “Tensile Strength of Simple Liquids Predicted by a Model of Molecular Interactions,”J. Phys., D. Appl. Phys., Vol. 18, pp. 647–659.CrossRefGoogle Scholar
  40. Lee, J., Park, H., Jung, J., and Kwak, H., 2003, “Bubble Nucleation on Micro Line Heaters,” ASMEJ. Heat Transfer, Vol. 125, pp. 687–692.CrossRefGoogle Scholar
  41. Lienahard, J. H., and Karimi, A., 1981, “Homogeneous Nucleation and the Spinodal Line,”ASME J. Heat Transfer, Vol. 103, pp. 61–64.CrossRefGoogle Scholar
  42. Lifshitz L. M. and Kagan Yu., 1972, “Quantum Kinetics of Phase Transitions at Temperature Close to Absolute Zero,”Soviet Phys., JETP. Vol. 30, pp. 206–214.Google Scholar
  43. Lin, L., and Pisano, A. P., 1991, “Bubble Forming on a Micro Line Heater,” Micromechanical Sensors, Actuators, and Systems, DSC-Vol. 32, ASME, New York, pp. 147–163.Google Scholar
  44. Lin, L. and Pisano, A. P., 1994, “Thermal Bubble Powered Microactuators,”Microsystem Tech., Vol. 1, pp. 51–58.CrossRefGoogle Scholar
  45. Lin, L. and Pisano, A. P. and Carey. V. P., 1998, “Thermal Bubble Formation on Polysilicon Micro Resistors,”ASME J. Heat Transfer., Vol. 120, pp. 735–742.CrossRefGoogle Scholar
  46. Maris, H. J., 1995, “Theory of Quantum Nucleation of Bubbles in Liquid helium,”J. Low Temp. Phys., Vol. 98, pp. 403–424.CrossRefGoogle Scholar
  47. Maris H. J. and Xiong Q., 1989, “Nucleation of Bubbles in Liquid Helium at Negative Pressure,”Phys. Rev. Lett., Vol. 63, pp. 1078–1081.CrossRefGoogle Scholar
  48. Marston P. L., 1976, “Tensile Strength and Visible Ultrasonic Cavitation of Superfluid 4He,”J. Low Temp. Phys., Vol. 25, pp. 383–407.CrossRefGoogle Scholar
  49. McCann, H., Clarke, L. J., and Masters, A. P., 1989, “An Experimental Study of Vapor Growth at the Superheat Limit Temperature,”Int. J. Heat Mass Transfer, Vol. 32, pp. 1077–1093.CrossRefGoogle Scholar
  50. Nielson, N. J., 1985, “History of Thermal Jet Printerhead Development,”HP Journal, Vol. 36, No. 5, pp. 12–13.Google Scholar
  51. Oh, S., Seung, S., and Kwak, H., 1999, “A Model of Bubble Nucleation on a Micro Line Heater,”ASME J. Heat Transfer, Vol. 121, pp. 220–225.CrossRefGoogle Scholar
  52. Oxtoby, D.W., and Evans, R., 1988, “Nonclassical Nucleation Theory for the Gas-Liquid Transition,”J. Chem, Phys., Vol. 89, pp. 7521–7530.CrossRefGoogle Scholar
  53. Patrick-Yeboch, J. R., and Reid, R. C., 1981, “Superheat-Limit Temperatures of Polar Liquid,”Ind. Eng. Chem. Fundam., Vol. 20, pp. 315–317.CrossRefGoogle Scholar
  54. Park, H., Byun, K., and Kwak, H., 2003, “Explosive boiling of Liquid Droplet at Their Superheat Limits,” submitted for publication.Google Scholar
  55. Park, S., Weng, J.-G., and Tien, C.-L., 2000, “Cavitation and Bubble Nucleation Using Molecular Dynamics Simulation,”Microscale Thermophys. Eng., Vol. 4, pp. 161–175.CrossRefGoogle Scholar
  56. Porteus, W., and Blander, M., 1975, “Limit of Superheat and Explosive Boiling of Light Hydrocarbons, Halocarbons, and Hydrocarbon Mixtures,”AIChE J., Vol. 21, pp. 560–566.CrossRefGoogle Scholar
  57. Pransnitz, J. M., 1969,Molecular Thermodynamics of Fluid-Phase Equilibria, Prentice-Hall, New York.Google Scholar
  58. Punnathanman, S., and Corti, D. S., 2002, “Homogeneous Bubble Nucleation in Stretched Fluids: Cavity Formation in the Superheated Lennard-Jones Liquid,”Ind. Eng. Chem. Res., Vol. 41, pp. 1113–1121.CrossRefGoogle Scholar
  59. Rao, M., Berne, B. J., and Kalos, M. H., 1978, “Computer Simulation of the Nucleation and Thermodynamics of Microclusters,”J. Chem. Phys., Vol. 68, pp. 1325–1336.CrossRefGoogle Scholar
  60. Rayleigh, L., 1917, “On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity,”Philo. Mag., Ser. 6, Vol. 34, pp. 94–98.Google Scholar
  61. Schrage, R. W., 1953,A Theoretical Study of Interphase Mass Transfer, Columbia University Press, New York.Google Scholar
  62. Shepherd, J. E., and Sturtevant, B., 1982, “Rapid Evaporation at the Superheat Limit,”J. Fluid Mech., Vol. 121. pp. 379–402.CrossRefGoogle Scholar
  63. Skripov, V. P., 1974,Metastable Liquids, Wiley, New York, Chap. 2.Google Scholar
  64. Sinitsyn, E. N., and Skripov, V. P., 1968, “Kinetics of Nucleation in Superheat Liquids,”Russ. J. Phys. Chem., Vol. 42, pp. 440–443.Google Scholar
  65. Streitwieser, A., and Heathcock, C. H., 1981,Introduction to Organic Chemistry, Macmillan, London, p. 147.Google Scholar
  66. Temperley, H. N. V., 1947, “The Behavior of Water Under Hydrostatic Tension,”Proc. Phys. Soc, Vol. 59, pp. 199–208.CrossRefGoogle Scholar
  67. Tien, C. L., and Lienhard, J. H., 1979,Statistical Thermodynamics, Hemisphere, Washington, DC, Chap. 9.Google Scholar
  68. Van Stralen, S. J. D and Cole, R., 1979,Boiling Phenomena, 1, McGraw-Hill Co.Google Scholar
  69. Vogel, A., Schweiger, P., Frieser, A., Asiyo, M. N., and Birngruber, R., 1990, “Intraocular Nd: YAG Laser Surgery ; Light-Tissue Interaction, Damage Range, and Reduction of Collateral Effects,”IEEE J. Quantum Electron, Vol. 26, pp. 2240–2260.CrossRefGoogle Scholar
  70. Volmer, M., Kinetik der Phasenbildung, 1939, translated by U. S. Department of Intelligense: refer to ATI No. 81935 from the Clearinghouse for Federal and Technical Information.Google Scholar
  71. Walrafen, G. E., 1966, “Raman Spectral Studies of the Effects of Temperature on Water and Electrolyte Solutions,”J. Chem. Phys., Vol. 44, pp. 1546–1558.CrossRefGoogle Scholar
  72. Xiong Q. and Maris H. J., 1991, “Study of Cavitation in Sperfluid Helium-4 at Low Temperatures,”J. Low Temp. Phys., Vol. 82, pp. 105–118.CrossRefGoogle Scholar
  73. Zeldovich, J. B., 1943, “On the Theory of New Phase Formation; Cavitation,”Acta Physicochimica, U.R.S.S., Vol. 18, pp. 1–22.Google Scholar

Copyright information

© The Korean Society of Mechanical Engineers (KSME) 2004

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentChung-Ang UniversitySeoulKorea

Personalised recommendations