Advertisement

Journal of Mathematical Sciences

, Volume 102, Issue 2, pp 3843–3875 | Cite as

Log models of birationally rigid varieties

  • I. Cheltsov
Article

Abstract

All varieties are assumed to be projective and to be defined over ℂ. The main definitions, notation, and notions are contained in [11].

UDC 512.774

512.776 512.76 512.724 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Artin, “On isolated rational singularities of surfaces,”Amer. J. Math.,88, 129–136 (1966).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. Beauville, “Variétiés de Prym et Jacobiennes intermédiaires,”Ann. Sci. Ecole Norm. Sup.,10, 309–399 (1977).MATHMathSciNetGoogle Scholar
  3. 3.
    A. Corti, “Factorizing birational maps of threefolds after Sarkisov,”J. Alg. Geom.,4, 223–254 (1995).MATHMathSciNetGoogle Scholar
  4. 4.
    I. Dolgachev, “Rational surfaces with a pencil of elliptic curves,”Izv. Akad. Nauk SSSR, Ser. Mat.,30, 1073–1100 (1966).MathSciNetGoogle Scholar
  5. 5.
    V. A. Iskovskikh, “Rational surfaces with a pencil of rational curves,”Mat. Sb.,74, 608–638 (1967).MathSciNetGoogle Scholar
  6. 6.
    V. A. Iskovskikh, “Anticanonical models of three-dimensional algebraic manifolds,” In:Sovr. Problemy Matematiki, Vol. 12 (1978), pp. 59–157.Google Scholar
  7. 7.
    V. A. Iskovskikh, “Birational automorphisms of three-dimensional algebraic manifolds,” In:Sovr. Problemy Matematiki, Vol. 12 (1978), pp. 159–236.Google Scholar
  8. 8.
    V. A. Iskovskikh and Yu. I. Manin, “Three-dimensional quartics and counterexamples to the Lüroth problem,”Mat. Sb.,86, 140–166 (1971).MathSciNetGoogle Scholar
  9. 9.
    Yu. I. Manin, “Rational surfaces over perfect fields,”Publ. Math. IHES,30, 55–114 (1966).MATHMathSciNetGoogle Scholar
  10. 10.
    Yu. I. Manin, “Rational surfaces over perfect fields: II,”Mat. Sb.,72, 161–192 (1967).MathSciNetGoogle Scholar
  11. 11.
    Y. Kawamata, K. Matsuda, and K. Matsuki, “Introduction to the minimal model problem,”Adv. Stud. Pure Math.,10, 283–360 (1987).MathSciNetGoogle Scholar
  12. 12.
    S. Keel, K. Matsuki, and J. McKernan, “Log abundance theorem for threefolds,”Duke Math. J.,75, 99–119 (1994).MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    J. Kollár et al., “Flips and abundance for algebraic threefolds,”Astérique,211 (1992).Google Scholar
  14. 14.
    J. Kollár,Rational Curves on Algebraic Varieties, Springer-Verlag (1996).Google Scholar
  15. 15.
    A. V. Pukhlikov, “Essentials of the method of maximal singularities,” Preprint (1996).Google Scholar
  16. 16.
    V. S. Sarkisov, “Birational automorphisms of fibers on conics,”Izv. Akad. Nauk SSSR, Ser. Mat.,44, 918–945 (1980).MATHMathSciNetGoogle Scholar
  17. 17.
    V. G. Sarkisov, “On the structure of fibers on conics,”Izv. Akad. Nauk SSSR, Ser. Mat.,46, 371–408 (1982).MathSciNetGoogle Scholar
  18. 18.
    V. V. Shokurov, “3-Fold log models,”J. Math. Sci.,81, 2667–2699 (1996).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • I. Cheltsov

There are no affiliations available

Personalised recommendations