Skip to main content
Log in

Identification of anSH2D1A mutation in a hypogammaglobulinemic male patient with a diagnosis of common variable immunodeficiency

  • Case Report
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Common variable immunodeficiency (CVID) is a highly heterogeneous disease with an unpredictable pattern. CVID appears to have an immunologic and clinical phenotype similar to some hereditary humoral immunodeficiencies, including X-linked lymphoproliferative disease (XLP).The differential diagnosis of CVID and XLP is clinically of importance, because the two diseases have markedly different prognoses and treatment. The recent identification of the XLP gene, known asSH2D1A, has permitted a definitive diagnosis of XLP. In this report, we describe a male patient with XLP who initially received a diagnosis of CVID and developed a fatal course. Using genetic analysis, we confirmed that the patient harbored theSH2D1A gene mutation.The results support the notion that the possibility of aSH2D1A gene mutation should be considered in hypogammaglobulinemic male patients before a diagnosis of CVID is made. Int J Hematol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cunningham-Rundles C, Bodian C. Common variable immunodeficiency: clinical and immunological features of 248 patients.Clin Immunol. 1999;92:34–48.

    Article  CAS  PubMed  Google Scholar 

  2. Cunningham-Rundles C. Hematologic complications of primary immune deficiencies.Blood Rev. 2002;16:61–64.

    Article  CAS  PubMed  Google Scholar 

  3. Spickett GP, Webster AD, Farrant J. Cellular abnormalities in common variable immunodeficiency.Immunodefic Rev. 1990;2:199–219.

    CAS  PubMed  Google Scholar 

  4. Stagg AJ, Funauchi M, Knight SC, Webster AD, Farrant J. Failure in antigen responses by T cells from patients with common variable immunodeficiency (CVID).Clin Exp Immunol. 1994;96:48–53.

    Article  CAS  PubMed  Google Scholar 

  5. Fischer MB, Hauber I, Eggenbauer H, et al. A defect in the early phase of T-cell receptor-mediated T-cell activation in patients with common variable immunodeficiency.Blood. 1994;84:4234–4241.

    CAS  PubMed  Google Scholar 

  6. Di Renzo M, Zhou Z, George I, Becker K, Cunningham-Rundles C. Enhanced apoptosis of T cells in common variable immunodeficiency (CVID): role of defective CD28 co-stimulation.Clin Exp Immunol. 2000;120:503–511.

    Article  PubMed  Google Scholar 

  7. Di Renzo M, Serrano D, Zhou Z, George I, Becker K, Cunningham-Rundles C. Enhanced T cell apoptosis in common variable immunodeficiency: negative role of the fas/fas ligand system and of the Bcl-2 family proteins and possible role of TNF-RS.Clin Exp Immunol. 2001;125:117–122.

    Article  PubMed  Google Scholar 

  8. Kanegane H, Tsukada S, Iwata T, et al. Detection of Bruton’s tyrosine kinase mutations in hypogammaglobulinaemic males registered as common variable immunodeficiency (CVID) in the Japanese Immunodeficiency Registry.Clin Exp Immunol. 2000;120:512–517.

    Article  CAS  PubMed  Google Scholar 

  9. Farrington M, Grosmair LS, Nonomyamas S, et al. CD40 ligand expression is defective in a subset of patient with common variable immunodeficiency.Proc Natl Acad Sci U S A. 1994;91:1099–1103.

    Article  CAS  PubMed  Google Scholar 

  10. Ferrai S, Giliani S, Insalaco A, et al. Mutation of CD40 gene cause a novel autosomal recessive form of hyper IgM.Proc Natl Acad Sci U S A. 2001;98:12614–12619.

    Article  Google Scholar 

  11. Revy P, Muto T, Levy Y, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2).Cell. 2000;102:565–575.

    Article  CAS  PubMed  Google Scholar 

  12. Morra M, Silander O, Calpe S, et al. Alterations of the X-linked lymphoproliferative disease gene SH2D1A in common variable immunodeficiency syndrome.Blood. 2001;98:1321–1325.

    Article  CAS  PubMed  Google Scholar 

  13. Nistala K, Gilmour KC, Cranston T, et al. X-linked lymphoproliferative disease: three atypical cases.Clin Exp Immunol. 2001;126: 126–130.

    Article  CAS  PubMed  Google Scholar 

  14. Purtilo DT, Cassel CK,Yang JP, Harper R. X-linked recessive progressive combined variable immunodeficiency (Duncan’s disease).Lancet. 1975;1:935–940.

    Article  CAS  PubMed  Google Scholar 

  15. Hamilton JK, Paquin LA, Sullivan JL, et al. X-linked lymphoproliferative syndrome registry report.J Pediatr. 1980;96:669–673.

    Article  CAS  PubMed  Google Scholar 

  16. Seemayer TA, Gross TG, Egeler RM, et al. X-linked lymphoproliferative disease: twenty-five years after the discovery.Pediatr Res. 1995;38:471–478.

    Article  CAS  PubMed  Google Scholar 

  17. Nichols KE, Hakin DP, Levitz S, et al. Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome.Proc Natl Acad Sci U S A. 1998;95:13765–13770.

    Article  CAS  PubMed  Google Scholar 

  18. Sayos J, Wu C, Morra M, et al. The X-linked lymphoproliferativedisease gene product SAP regulates signals induced through the co-receptor SLAM.Nature. 1998;395:462–469.

    Article  CAS  PubMed  Google Scholar 

  19. Coffey AJ, Brooksbank RA, Brandau O, et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene.Nat Genet. 1998;20:129–135.

    Article  CAS  PubMed  Google Scholar 

  20. Yin L, Ferrand V, Lavoue MF, et al. SH2D1A mutation analysis for diagnosis of XLP in typical and atypical patients.Hum Genet. 1999; 105:501–505.

    Article  CAS  PubMed  Google Scholar 

  21. Sumegi J, Huang D, Lanyi A, et al. Correlation of mutations of the SH2D1A gene and Epstein-Barr virus infection with clinical phenotype and outcome in X-linked lymphoproliferative disease.Blood. 2000;96:3118–3125.

    CAS  PubMed  Google Scholar 

  22. Grieson HL, Sakre J, Church J, et al. Evaluation of families where a single male manifests a phenotype of X-linked lymphoproliferative disease (XLP).Am J Med Genet. 1993;47:458–463.

    Article  Google Scholar 

  23. Bar RS, DeLor CJ, Clausen KP, Hurtubise P, Henle W, Hewetson JF. Fatal infectious mononucleosis in a family.New Engl J Med. 1975; 290:363–367.

    Article  Google Scholar 

  24. Howie D, Sayos J, Tehorst C, Morra M. The gene defective in X-linked lymphoproliferative disease controls T cell dependent immunosurveillance against Epstein-Barr virus.Curr Opin Immunol. 2000;12:474–478.

    Article  CAS  PubMed  Google Scholar 

  25. Pracher E, Panzer-Grumayer ER, Zoubek A, Peters C, Gadner H. Successful bone marrow transplantation in a boy with X-linked lymphoproliferative syndrome and acute severe infectious mononucleosis.Bone Marrow Transplant. 1994;13:655–658.

    CAS  PubMed  Google Scholar 

  26. Hoffman T, Heilman C, Madsen HO, Vindelov L, Schmiegelow K. Matched unrelated allogeneic bone marrow transplantation for recurrent malignant lymphoma in a patient with X-linked lymphoproliferative disease (XLP).Bone Marrow Transplant. 1998;22:603–604.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Kanegane.

About this article

Cite this article

Aghamohammadi, A., Kanegane, H., Moein, M. et al. Identification of anSH2D1A mutation in a hypogammaglobulinemic male patient with a diagnosis of common variable immunodeficiency. Int J Hematol 78, 45–47 (2003). https://doi.org/10.1007/BF02983239

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02983239

Key words

Navigation