Advertisement

International Journal of Hematology

, Volume 78, Issue 1, pp 45–47 | Cite as

Identification of anSH2D1A mutation in a hypogammaglobulinemic male patient with a diagnosis of common variable immunodeficiency

  • Asghar Aghamohammadi
  • Hirokazu Kanegane
  • Mostafa Moein
  • Abolhasan Farhoudi
  • Zahra Pourpak
  • Masoud Movahedi
  • Mohammad Gharagozlou
  • Ali Akabar Amir Zargar
  • Toshio Miyawaki
Case Report

Abstract

Common variable immunodeficiency (CVID) is a highly heterogeneous disease with an unpredictable pattern. CVID appears to have an immunologic and clinical phenotype similar to some hereditary humoral immunodeficiencies, including X-linked lymphoproliferative disease (XLP).The differential diagnosis of CVID and XLP is clinically of importance, because the two diseases have markedly different prognoses and treatment. The recent identification of the XLP gene, known asSH2D1A, has permitted a definitive diagnosis of XLP. In this report, we describe a male patient with XLP who initially received a diagnosis of CVID and developed a fatal course. Using genetic analysis, we confirmed that the patient harbored theSH2D1A gene mutation.The results support the notion that the possibility of aSH2D1A gene mutation should be considered in hypogammaglobulinemic male patients before a diagnosis of CVID is made. Int J Hematol.

Key words

Common variable immunodeficiency X-linked lymphoproliferative disease SH2D1A Fatal complication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cunningham-Rundles C, Bodian C. Common variable immunodeficiency: clinical and immunological features of 248 patients.Clin Immunol. 1999;92:34–48.CrossRefPubMedGoogle Scholar
  2. 2.
    Cunningham-Rundles C. Hematologic complications of primary immune deficiencies.Blood Rev. 2002;16:61–64.CrossRefPubMedGoogle Scholar
  3. 3.
    Spickett GP, Webster AD, Farrant J. Cellular abnormalities in common variable immunodeficiency.Immunodefic Rev. 1990;2:199–219.PubMedGoogle Scholar
  4. 4.
    Stagg AJ, Funauchi M, Knight SC, Webster AD, Farrant J. Failure in antigen responses by T cells from patients with common variable immunodeficiency (CVID).Clin Exp Immunol. 1994;96:48–53.CrossRefPubMedGoogle Scholar
  5. 5.
    Fischer MB, Hauber I, Eggenbauer H, et al. A defect in the early phase of T-cell receptor-mediated T-cell activation in patients with common variable immunodeficiency.Blood. 1994;84:4234–4241.PubMedGoogle Scholar
  6. 6.
    Di Renzo M, Zhou Z, George I, Becker K, Cunningham-Rundles C. Enhanced apoptosis of T cells in common variable immunodeficiency (CVID): role of defective CD28 co-stimulation.Clin Exp Immunol. 2000;120:503–511.CrossRefPubMedGoogle Scholar
  7. 7.
    Di Renzo M, Serrano D, Zhou Z, George I, Becker K, Cunningham-Rundles C. Enhanced T cell apoptosis in common variable immunodeficiency: negative role of the fas/fas ligand system and of the Bcl-2 family proteins and possible role of TNF-RS.Clin Exp Immunol. 2001;125:117–122.CrossRefPubMedGoogle Scholar
  8. 8.
    Kanegane H, Tsukada S, Iwata T, et al. Detection of Bruton’s tyrosine kinase mutations in hypogammaglobulinaemic males registered as common variable immunodeficiency (CVID) in the Japanese Immunodeficiency Registry.Clin Exp Immunol. 2000;120:512–517.CrossRefPubMedGoogle Scholar
  9. 9.
    Farrington M, Grosmair LS, Nonomyamas S, et al. CD40 ligand expression is defective in a subset of patient with common variable immunodeficiency.Proc Natl Acad Sci U S A. 1994;91:1099–1103.CrossRefPubMedGoogle Scholar
  10. 10.
    Ferrai S, Giliani S, Insalaco A, et al. Mutation of CD40 gene cause a novel autosomal recessive form of hyper IgM.Proc Natl Acad Sci U S A. 2001;98:12614–12619.CrossRefGoogle Scholar
  11. 11.
    Revy P, Muto T, Levy Y, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2).Cell. 2000;102:565–575.CrossRefPubMedGoogle Scholar
  12. 12.
    Morra M, Silander O, Calpe S, et al. Alterations of the X-linked lymphoproliferative disease gene SH2D1A in common variable immunodeficiency syndrome.Blood. 2001;98:1321–1325.CrossRefPubMedGoogle Scholar
  13. 13.
    Nistala K, Gilmour KC, Cranston T, et al. X-linked lymphoproliferative disease: three atypical cases.Clin Exp Immunol. 2001;126: 126–130.CrossRefPubMedGoogle Scholar
  14. 14.
    Purtilo DT, Cassel CK,Yang JP, Harper R. X-linked recessive progressive combined variable immunodeficiency (Duncan’s disease).Lancet. 1975;1:935–940.CrossRefPubMedGoogle Scholar
  15. 15.
    Hamilton JK, Paquin LA, Sullivan JL, et al. X-linked lymphoproliferative syndrome registry report.J Pediatr. 1980;96:669–673.CrossRefPubMedGoogle Scholar
  16. 16.
    Seemayer TA, Gross TG, Egeler RM, et al. X-linked lymphoproliferative disease: twenty-five years after the discovery.Pediatr Res. 1995;38:471–478.CrossRefPubMedGoogle Scholar
  17. 17.
    Nichols KE, Hakin DP, Levitz S, et al. Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome.Proc Natl Acad Sci U S A. 1998;95:13765–13770.CrossRefPubMedGoogle Scholar
  18. 18.
    Sayos J, Wu C, Morra M, et al. The X-linked lymphoproliferativedisease gene product SAP regulates signals induced through the co-receptor SLAM.Nature. 1998;395:462–469.CrossRefPubMedGoogle Scholar
  19. 19.
    Coffey AJ, Brooksbank RA, Brandau O, et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene.Nat Genet. 1998;20:129–135.CrossRefPubMedGoogle Scholar
  20. 20.
    Yin L, Ferrand V, Lavoue MF, et al. SH2D1A mutation analysis for diagnosis of XLP in typical and atypical patients.Hum Genet. 1999; 105:501–505.CrossRefPubMedGoogle Scholar
  21. 21.
    Sumegi J, Huang D, Lanyi A, et al. Correlation of mutations of the SH2D1A gene and Epstein-Barr virus infection with clinical phenotype and outcome in X-linked lymphoproliferative disease.Blood. 2000;96:3118–3125.PubMedGoogle Scholar
  22. 22.
    Grieson HL, Sakre J, Church J, et al. Evaluation of families where a single male manifests a phenotype of X-linked lymphoproliferative disease (XLP).Am J Med Genet. 1993;47:458–463.CrossRefGoogle Scholar
  23. 23.
    Bar RS, DeLor CJ, Clausen KP, Hurtubise P, Henle W, Hewetson JF. Fatal infectious mononucleosis in a family.New Engl J Med. 1975; 290:363–367.CrossRefGoogle Scholar
  24. 24.
    Howie D, Sayos J, Tehorst C, Morra M. The gene defective in X-linked lymphoproliferative disease controls T cell dependent immunosurveillance against Epstein-Barr virus.Curr Opin Immunol. 2000;12:474–478.CrossRefPubMedGoogle Scholar
  25. 25.
    Pracher E, Panzer-Grumayer ER, Zoubek A, Peters C, Gadner H. Successful bone marrow transplantation in a boy with X-linked lymphoproliferative syndrome and acute severe infectious mononucleosis.Bone Marrow Transplant. 1994;13:655–658.PubMedGoogle Scholar
  26. 26.
    Hoffman T, Heilman C, Madsen HO, Vindelov L, Schmiegelow K. Matched unrelated allogeneic bone marrow transplantation for recurrent malignant lymphoma in a patient with X-linked lymphoproliferative disease (XLP).Bone Marrow Transplant. 1998;22:603–604.CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Hematology 2003

Authors and Affiliations

  • Asghar Aghamohammadi
    • 1
    • 2
  • Hirokazu Kanegane
    • 2
  • Mostafa Moein
    • 1
  • Abolhasan Farhoudi
    • 1
  • Zahra Pourpak
    • 1
  • Masoud Movahedi
    • 1
  • Mohammad Gharagozlou
    • 1
  • Ali Akabar Amir Zargar
    • 1
  • Toshio Miyawaki
    • 2
  1. 1.Department of Clinical Pediatric Immunology, Children’s Medical Center HospitalTehran University of Medical SciencesTehranIran
  2. 2.Department of Pediatrics, Faculty of MedicineToyama Medical and Pharmaceutical UniversityToyamaJapanJapan

Personalised recommendations