Journal of Genetics

, Volume 45, Issue 3, pp 215–235 | Cite as

Specific differences inPetunia

I. Incompatibility
  • K. Mather


Reciprocal Cross Male Gamete Female Gamete Polygenic Control Incompatibility System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, E. &de Winton, D. (1931). The genetic analysis of an unusual relationship between self-sterility and self-fertility inNicotiana.Ann. Mo. Bot. Gdn,18, 97–116.CrossRefGoogle Scholar
  2. Bailey, L. H. (1896).The Survival of the Unlike. New York: Macmillan.Google Scholar
  3. Brieger, F. (1930).Selbsterilität und Kreuzungssterilität in Pflanzenreich und Tierreich. Berlin: Springer.Google Scholar
  4. Correns, C. (1912). Selbsterilität und Individualstoffe.Festschr. mat.-nat. Gesell. zur 84.Versamml. dtsch. Naturforscher u. Ärtze Münster i. W. pp. 1–32.Google Scholar
  5. East, E. M. (1929). Self-sterility.Bibliogr. genet.5, 331–70.Google Scholar
  6. East, E. M. (1940). The distribution of self-sterility in the flowering plants.Proc. Amer. Phil. Soc.82, 449–518.Google Scholar
  7. East, E. M. &Mangelsdorf, A. J. (1925). A new interpretation of the hereditary behaviour of self-sterile plants.Proc. Nat. Acad. Sci., Wash.,11, 166–71.CrossRefGoogle Scholar
  8. Ferguson, M. C. &Ottley, A. M. (1932). Studies onPetunia. III. A redescription and an additional discussion of certain species ofPetunia.Amer. J. Bot.19, 385–405.CrossRefGoogle Scholar
  9. Filzer, P. (1926). Die Selbsterilität vonVeronica syriaca.Z. indukt. Abstamm.- u. VererbLehre,41, 137–97.CrossRefGoogle Scholar
  10. Harland, S. C. &Atteck, O. S. (1933). The inheritance of self-sterility inPetunia violacea.Genetica,15, 89–102.CrossRefGoogle Scholar
  11. Mather, K. (1941). Variation and selection of polygenic characters.J. Genet.41, 159–93.CrossRefGoogle Scholar
  12. Mather, K. (1943). Polygenic inheritance and natural selection.Biol. Rev.18, 32–64.CrossRefGoogle Scholar
  13. Mather, K. &de Winton, D. (1941). Adaptation and counter-adaptation of the breeding system inPrimula.Ann. Bot., Lond., N.S.5, 297–311.Google Scholar
  14. Riley, H. P. (1936). The genetics and physiology of self-sterility in the genusCapsella.Genetics,21, 24–39.PubMedGoogle Scholar
  15. Terao, H. (1923). On the inheritance of self-sterility (in Japanese).Jap. J. Genet.2, 144–55 (quoted by H. Matsuura,A Bibliographical Monograph on Plant Genetics, Hokkaido Imp. Univ. Publ. 2nd ed. 1933).Google Scholar
  16. Terao, H. &U, T. (1929). Inheritance phenomena of self-incompatibility inPetunia (in Japanese).Jap. J. Genet.4, 158–61 (quoted by Matsuura).CrossRefGoogle Scholar
  17. Tjebbes, K. (1931). Orientierende Untersuchungen über Fertilität beiPetunia. Bot. Notiser, pp. 174–84.Google Scholar
  18. Tjebbes, K. (1932). Studien über Fertilität beiPetunia-Kreuzungen.Bot. Notiser, pp. 269–77.Google Scholar
  19. Tseng, H. P. (1938). Self-sterility inAntirrhinum andPetupia.J. Genet.36, 127–38.CrossRefGoogle Scholar
  20. Wergin, W. (1936). Cyto-genetische Untersuchungen anPetunia hybrida Hort.Z. indukt. Abstamm.- u. VererbLehre,71, 120–55.CrossRefGoogle Scholar
  21. Wright, S. (1939). The distribution of self-sterility alleles in populations.Genetics,24, 538–52.PubMedGoogle Scholar

Copyright information

© Indian Academy of Sciences 1943

Authors and Affiliations

  • K. Mather
    • 1
  1. 1.John Innes Horticultural InstitutionMerton, London

Personalised recommendations