Skip to main content
Log in

ACE inhibitors as a therapy for sarcopenia — Evidence and possible mechanisms

  • Published:
The Journal of Nutrition Health and Aging

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Hortobagyi T, Mizelle C, Beam S, DeVita P. Old adults perform activities of daily living near their maximal capabilities. J.Gerontol.A Biol.Sci.Med.Sci. 2003;58:M453-M460.

    PubMed  Google Scholar 

  2. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J.Am.Geriatr.Soc. 2002;50:889–96.

    Article  PubMed  Google Scholar 

  3. Rantanen T, Avlund K, Suominen H, Schroll M, Frandin K, Pertti E. Muscle strength as a predictor of onset of ADL dependence in people aged 75 years. Aging Clin.Exp.Res. 2002;14:10–5.

    PubMed  Google Scholar 

  4. Laukkanen P, Heikkinen E, Kauppinen M. Muscle strength and mobility as predictors of survival in 75–84-year-old people. Age Ageing 1995;24:468–73.

    Article  PubMed  CAS  Google Scholar 

  5. Latham NK, Bennett DA, Stretton CM, Anderson CS. Systematic review of progressive resistance strength training in older adults. J.Gerontol.A Biol.Sci.Med.Sci. 2004;59:48–61.

    PubMed  Google Scholar 

  6. Skelton DA, Young A, Greig CA, Malbut KE. Effects of resistance training on strength, power, and selected functional abilities of women aged 75 and older. J.Am.Geriatr.Soc. 1995;43:1081–7.

    PubMed  CAS  Google Scholar 

  7. Onder G, Penninx BW, Balkrishnan R, Fried LP, Chaves PH, Williamson J et al. Relation between use of angiotensin-converting enzyme inhibitors and muscle strength and physical function in older women: an observational study. Lancet 2002;359:926–30.

    Article  PubMed  CAS  Google Scholar 

  8. Di Bari M, van de Poll-Franse LV, Onder G, Kritchevsky SB, Newman A, Harris TB et al. Antihypertensive medications and differences in muscle mass in older persons: the Health, Aging and Body Composition Study. J.Am.Geriatr.Soc. 2004;52:961–6.

    Article  PubMed  Google Scholar 

  9. Abdulla J, Abildstrom SZ, Christensen E, Kober L, Torp-Pedersen C. A meta-analysis of the effect of angiotensin-converting enzyme inhibitors on functional capacity in patients with symptomatic left ventricular systolic dysfunction. Eur. J.Heart Fail. 2004;6:927–35.

    Article  PubMed  CAS  Google Scholar 

  10. van Veldhuisen DJ, Genth-Zotz S, Brouwer J, Boomsma F, Netzer T, Man In T Veld AJ et al. Highversus low-dose ACE inhibition in chronic heart failure: a double-blind, placebo-controlled study of imidapril. J.Am.Coll.Cardiol. 1998;32:1811–8.

    Article  PubMed  Google Scholar 

  11. Pacher R, Stanek B, Globits S, Berger R, Hulsmann M, Wutte M et al. Effects of two different enalapril dosages on clinical, haemodynamic and neurohumoral response of patients with severe congestive heart failure. Eur.Heart J. 1996;17:1223–32.

    PubMed  CAS  Google Scholar 

  12. Hutcheon SD, Gillespie ND, Crombie IK, Struthers AD, McMurdo ME. Perindopril improves six minute walking distance in older patients with left ventricular systolic dysfunction: a randomised double blind placebo controlled trial. Heart 2002;88:373–7.

    Article  PubMed  CAS  Google Scholar 

  13. Ahimastos AA, Lawler A, Reid CM, Blombery PA, Kingwell BA. Brief communication: ramipril markedly improves walking ability in patients with peripheral arterial disease: a randomized trial. Ann.Intern.Med. 2006;144:660–4.

    PubMed  CAS  Google Scholar 

  14. Sumukadas D, Witham MD, Struthers AD, McMurdo ME. Effect of perindopril on physical function in elderly people with functional impairment: a randomized controlled trial. CMAJ. 2007;177:867–74.

    PubMed  Google Scholar 

  15. Perera S, Mody SH, Woodman RC, Studenski SA. Meaningful change and responsiveness in common physical performance measures in older adults. J.Am.Geriatr.Soc. 2006;54:743–9.

    Article  PubMed  Google Scholar 

  16. Lord SR, Castell S, Corcoran J, Dayhew J, Matters B, Shan A et al. The effect of group exercise on physical functioning and falls in frail older people living in retirement villages: a randomized, controlled trial. J.Am.Geriatr.Soc. 2003;51:1685–92.

    Article  PubMed  Google Scholar 

  17. Nelson ME, Layne JE, Bernstein MJ, Nuernberger A, Castaneda C, Kaliton D et al. The Effects of Multidimensional Home-Based Exercise on Functional Performance in Elderly People. J.Gerontol.A Biol.Sci.Med.Sci. 2004;59:M154-M160.

    Google Scholar 

  18. Walters SJ, Brazier JE. Comparison of the minimally important difference for two health state utility measures: EQ-5D and SF-6D. Qual.Life Res. 2005;14:1523–32.

    Article  PubMed  Google Scholar 

  19. Morgan S, Smith H, Simpson I, Liddiard GS, Raphael H, Pickering RM et al. Prevalence and clinical characteristics of left ventricular dysfunction among elderly patients in general practice setting: cross sectional survey. BMJ 1999;318:368–72.

    PubMed  CAS  Google Scholar 

  20. Zanchetti A, Cuspidi C, Comarella L, Rosei EA, Ambrosioni E, Chiariello M et al. Left ventricular diastolic dysfunction in elderly hypertensives: results of the APROS-diadys study. J.Hypertens. 2007;25:2158–67.

    PubMed  CAS  Google Scholar 

  21. Lonn E, Shaikholeslami R, Yi Q, Bosch J, Sullivan B, Tanser P et al. Effects of ramipril on left ventricular mass and function in cardiovascular patients with controlled blood pressure and with preserved left ventricular ejection fraction: a substudy of the Heart Outcomes Prevention Evaluation (HOPE) Trial. J.Am.Coll.Cardiol. 2004;43:2200–6.

    Article  PubMed  CAS  Google Scholar 

  22. Newman AB, Gottdiener JS, Mcburnie MA, Hirsch CH, Kop WJ, Tracy R et al. Associations of subclinical cardiovascular disease with frailty. J.Gerontol.A Biol.Sci.Med.Sci. 2001;56:M158-M166.

    PubMed  CAS  Google Scholar 

  23. Jondeau G, Katz SD, Zohman L, Goldberger M, McCarthy M, Bourdarias JP et al. Active skeletal muscle mass and cardiopulmonary reserve. Failure to attain peak aerobic capacity during maximal bicycle exercise in patients with severe congestive heart failure. Circulation 1992;86:1351–6.

    PubMed  CAS  Google Scholar 

  24. Dinenno FA, Jones PP, Seals DR, Tanaka H. Limb blood flow and vascular conductance are reduced with age in healthy humans: relation to elevations in sympathetic nerve activity and declines in oxygen demand. Circulation 1999;100:164–70.

    PubMed  CAS  Google Scholar 

  25. Proctor DN, Shen PH, Dietz NM, Eickhoff TJ, Lawler LA, Ebersold EJ et al. Reduced leg blood flow during dynamic exercise in older endurance-trained men. J.ApplPhysiol 1998;85:68–75.

    CAS  Google Scholar 

  26. Meijer WT, Hoes AW, Rutgers D, Bots ML, Hofman A, Grobbee DE. Peripheral arterial disease in the elderly: The Rotterdam Study. Arterioscler.Thromb.Vasc.Biol. 1998;18:185–92.

    PubMed  CAS  Google Scholar 

  27. McDermott MM, Fried L, Simonsick E, Ling S, Guralnik JM. Asymptomatic peripheral arterial disease is independently associated with impaired lower extremity functioning: the women’s health and aging study. Circulation 2000;101:1007–12.

    PubMed  CAS  Google Scholar 

  28. Drexler H. Effect of angiotensin-converting enzyme inhibitors on the peripheral circulation in heart failure. Am.J.Cardiol. 1992;70:50C-4C.

    Article  PubMed  CAS  Google Scholar 

  29. Li J, Sinoway LI, Ng YC. Aging augments interstitial K+ concentrations in active muscle of rats. J.Appl.Physiol 2006;100:1158–63.

    Article  PubMed  CAS  Google Scholar 

  30. Hool LC, Whalley DW, Doohan MM, Rasmussen HH. Angiotensin-converting enzyme inhibition, intracellular Naf, and Na(+)−K+ pumping in cardiac myocytes. Am.J.Physiol 1995;268:C366-C375.

    PubMed  CAS  Google Scholar 

  31. Ottlecz A, Bensaoula T. Captopril ameliorates the decreased Na+,K(+)-ATPase activity in the retina of streptozotocin-induced diabetic rats. Invest Ophthalmol.Vis.Sci. 1996;37:1633–41.

    PubMed  CAS  Google Scholar 

  32. Anwar A, Gaspoz JM, Pampallona S, Zahid AA, Sigaud P, Pichard C et al. Effect of congestive heart failure on the insulin-like growth factor-1 system. Am.J.Cardiol. 2002;90:1402–5.

    Article  PubMed  CAS  Google Scholar 

  33. Brink M, Price SR, Chrast J, Bailey JL, Anwar A, Mitch WE et al. Angiotensin n induces skeletal muscle wasting through enhanced protein degradation and down-regulates automne insulin-like growth factor I. Endocrinology 2001;142:1489–96.

    Article  PubMed  CAS  Google Scholar 

  34. Maggio M, Ceda GP, Lauretani F, Pahor M, Bandinelli S, Najjar SS et al. Relation of angiotensin-converting enzyme inhibitor treatment to insulin-like growth factor-1 serum levels in subjects >65 years of age (the InCHIANTI study). Am.J.Cardiol. 2006;97:1525–9.

    Article  PubMed  CAS  Google Scholar 

  35. Henriksen EJ, Jacob S. Modulation of metabolic control by angiotensin converting enzyme (ACE) inhibition. J.Cell Physiol 2003;196:171–9.

    Article  PubMed  CAS  Google Scholar 

  36. Walker RJ, Lewis-Barned NJ, Edwards EA, Robertson MC. The effects of increasing doses of enalapril on insulin sensitivity in normotensive non-insulin dependent diabetic subjects. Aust.N.ZJ.Med. 1995;25:698–702.

    CAS  Google Scholar 

  37. Yavuz D, Koc M, Toprak A, Akpinar L Velioglu A, Deyneli O et al. Effects of ACE inhibition and ATI-receptor antagonism on endothelial function and insulin sensitivity in essential hypertensive patients. J.Renin.Angiotensin.Aldosterone.Syst 2003;4:197–203.

    Article  PubMed  CAS  Google Scholar 

  38. Tezcan H, Yavuz D, Toprak A, Akpinar I, Koc M, Deyneli O et al. Effect of angiotensinconverting enzyme inhibition on endothelial function and insulin sensitivity in hypertensive patients. J.Renin.Angiotensin.Aldosterone.Syst. 2003;4:119–23.

    Article  PubMed  CAS  Google Scholar 

  39. Galletti F, Strazzullo P, Capaldo B, Carretta R, Fabris F, Ferrara LA et al. Controlled study of the effect of angiotensin converting enzyme inhibition versus calcium-entry blockade on insulin sensitivity in overweight hypertensive patients: Trandolapril Italian Study (TRIS). J.Hypertens. 1999;17:439–45.

    Article  PubMed  CAS  Google Scholar 

  40. Scheen AJ. Prevention of type 2 diabetes mellitus through inhibition of the Renin-Angiotensin system. Drugs 2004;64:2537–65.

    Article  PubMed  CAS  Google Scholar 

  41. Laviades C, Gil MJ, Monreal I, Gonzalez A, Diez J. Tissue availability of insulin-like growth factor I is inversely related to insulin resistance in essential hypertension: effects of angiotensin converting enzyme inhibition. J.Hypertens. 1998;16:863–70.

    Article  PubMed  CAS  Google Scholar 

  42. Rimbert V, Boirie Y, Bedu M, Hocquette JF, Ritz P, Morio B. Muscle fat oxidative capacity is not impaired by age but by physical inactivity: association with insulin sensitivity. FASEB J. 2004;18:737–9.

    PubMed  CAS  Google Scholar 

  43. Kadi F, Charifi N, Denis C, Lexell J. Satellite cells and myonuclei in young and elderly women and men. Muscle Nerve 2004;29:120–7.

    Article  PubMed  Google Scholar 

  44. Charifi N, Kadi F, Feasson L, Denis C. Effects of endurance training on satellite cell frequency in skeletal muscle of old men. Muscle Nerve 2003;28:87–92.

    Article  PubMed  Google Scholar 

  45. Cohn RD, van Erp C, Habashi JP, Soleimani AA, Klein EC., Lisi MT et al. Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states. NatMed. 2007;13:204–10.

    CAS  Google Scholar 

  46. Koh TJ, Tidball JG. Nitric oxide synthase inhibitors reduce sarcomere addition in rat skeletal muscle. JPhysiol 1999;519 Pt 1:189–96.

    Article  CAS  Google Scholar 

  47. Wang MX, Murrell DF, Szabo C, Warren RF, Sarris M, Murrell GA. Nitric oxide in skeletal muscle: inhibition of nitric oxide synthase inhibits walking speed in rats. NitricOxide. 2001;5:219–32.

    CAS  Google Scholar 

  48. Balagopal P, Schimke JC, Ades P, Adey D, Nair KS. Age effect on transcript levels and synthesis rate of muscle MHC and response to resistance exercise. Am.J.Physiol Endocrinol.Metab 2001;280:E203-E208.

    PubMed  CAS  Google Scholar 

  49. Andersen JL. Muscle fibre type adaptation in the elderly human muscle. Scand.J.Med.Sci.Sports 2003;13:40–7.

    Article  PubMed  Google Scholar 

  50. Frontera WR, Hughes VA, Fielding RA, Fiatarone MA, Evans WJ, Roubenoff R. Aging of skeletal muscle: a 12-yr longitudinal study. J.Appl.Physiol 2000;88:1321–6.

    PubMed  CAS  Google Scholar 

  51. Vescovo G, Dalla LL, Serafini F, Leprotti C, Facchin L, Volterrani M et al. Improved exercise tolerance after losartan and enalapril in heart failure: correlation with changes in skeletal muscle myosin heavy chain composition. Circulation 1998;98:1742–9.

    PubMed  CAS  Google Scholar 

  52. Minami N, Li Y, Guo Q, Kawamura T, Mori N, Nagasaka M et al. Effects of angiotensinconverting enzyme inhibitor and exercise training on exercise capacity and skeletal muscle. J.Hypertens. 2007;25:1241–8.

    Article  PubMed  CAS  Google Scholar 

  53. Coirault C, Langeron O, Lambert F, Blanc FX, Lerebours G, Claude N et al. Impaired skeletal muscle performance in the early stage of cardiac pressure overload in rabbits: beneficial effects of angiotensin-converting enzyme inhibition. J.Pharmacol.Exp.Ther. 1999;291:70–5.

    PubMed  CAS  Google Scholar 

  54. Conley KE, Jubrias SA, Esselman PC. Oxidative capacity and ageing in human muscle. JPhysiol 2000;526 Pt 1:203–10.

    Article  CAS  Google Scholar 

  55. Welle S, Bhatt K, Thornton CA. High-abundance mRNAs in human muscle: comparison between young and old. J.Appl.Physiol 2000;89:297–304.

    PubMed  CAS  Google Scholar 

  56. de Cavanagh EM, Piotrkowski B, Basso N, Stella I, Inserra F, Ferder L et al. Enalapril and losartan attenuate mitochondrial dysfunction in aged rats. FASEB J. 2003;17:1096–8.

    PubMed  Google Scholar 

  57. Boveris A, D’Amico G, Lores-Arnaiz S, Costa LE. Enalapril increases mitochondrial nitric oxide synthase activity in heart and liver. Antioxid.Redox.Signal. 2003;5:691–7.

    Article  PubMed  CAS  Google Scholar 

  58. Rouyer O, Zoll J, Daussin F, Damge C, Helms P, Talha S et al. Effect of angiotensinconverting enzyme inhibition on skeletal muscle oxidative function and exercise capacity in streptozotocin-induced diabetic rats. ExpPhysiol 2007;92:1047–56.

    CAS  Google Scholar 

  59. Zoll J, Monassier L, Gamier A, Nguessan B, Mettauer B, Veksler V et al. ACE inhibition prevents myocardial infarction-induced skeletal muscle mitochondrial dysfunction. J.Appl.Physiol 2006;101:385–91.

    Article  PubMed  CAS  Google Scholar 

  60. Bahi L, Koulmann N, Sanchez H, Momken I, Veksler V, Bigard AX et al. Does ACE inhibition enhance endurance performance and muscle energy metabolism in rats? J.Appl.Physiol 2004;96:59–64.

    Article  PubMed  CAS  Google Scholar 

  61. Renganathan M, Messi ML, Delbono O. Dihydropyridine receptor-ryanodine receptor uncoupling in aged skeletal muscle. J.Membr.Biol. 1997;157:247–53.

    Article  PubMed  CAS  Google Scholar 

  62. Pouvreau S, Allard B, Berthier C, Jacquemond V. Control of intracellular calcium in the presence of nitric oxide donors in isolated skeletal muscle fibres from mouse. J.Physiol 2004;560:779–94.

    Article  PubMed  CAS  Google Scholar 

  63. Sylven C, Jansson E, Cederholm T, Hildebrand IL, Beermann B. Skeletal muscle depressed calcium and phosphofructokinase in chronic heart failure are upregulated by captopril-a double-blind, placebo-controlled study. J.Intern.Med. 1991;229:171–4.

    Article  PubMed  CAS  Google Scholar 

  64. Renganathan M, Messi ML, Delbono O. Overexpression of IGF-1 exclusively in skeletal muscle prevents age-related decline in the number of dihydropyridine receptors. J.Biol.Chem. 1998;273:28845–51.

    Article  PubMed  CAS  Google Scholar 

  65. Harms CA, Babcock MA, McClaran SR, Pegelow DF, Nickele GA, Nelson WB et al. Respiratory muscle work compromises leg blood flow during maximal exercise. J.Appl.Physiol 1997;82:1573–83.

    PubMed  CAS  Google Scholar 

  66. Coirault C, Hagege A, Chemla D, Fratacci MD, Guerot C, Lecarpentier Y. Angiotensinconverting enzyme inhibitor therapy improves respiratory muscle strength in patients with heart failure. Chest 2001;119:1755–60.

    Article  PubMed  CAS  Google Scholar 

  67. Myerson S, Hemingway H, Budget R, Martin J, Humphries S, Montgomery H. Human angiotensin I-converting enzyme gene and endurance performance. J.Appl.Physiol 1999;87:1313–6.

    PubMed  CAS  Google Scholar 

  68. Kritchevsky SB, Nicklas BJ, Visser M, Simonsick EM, Newman AB, Harris TB et al. Angiotensin-converting enzyme insertion/deletion genotype, exercise, and physical decline. JAMA 2005;294:691–8.

    Article  PubMed  CAS  Google Scholar 

  69. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J.Clin.Invest 1990;86:1343–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sumukadas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sumukadas, D., Witham, M.D., Struthers, A.D. et al. ACE inhibitors as a therapy for sarcopenia — Evidence and possible mechanisms. J Nutr Health Aging 12, 480–485 (2008). https://doi.org/10.1007/BF02982709

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02982709

Keywords

Navigation