Advertisement

ACE inhibitors as a therapy for sarcopenia — Evidence and possible mechanisms

  • D. Sumukadas
  • M. D. Witham
  • A. D. Struthers
  • M. E. T. Mcmurdo
Article

Keywords

Angiotensin Convert Enzyme Satellite Cell Angiotensin Convert Enzyme Inhibitor Perindopril Nitric Oxide Synthetase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hortobagyi T, Mizelle C, Beam S, DeVita P. Old adults perform activities of daily living near their maximal capabilities. J.Gerontol.A Biol.Sci.Med.Sci. 2003;58:M453-M460.PubMedGoogle Scholar
  2. 2.
    Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J.Am.Geriatr.Soc. 2002;50:889–96.PubMedCrossRefGoogle Scholar
  3. 3.
    Rantanen T, Avlund K, Suominen H, Schroll M, Frandin K, Pertti E. Muscle strength as a predictor of onset of ADL dependence in people aged 75 years. Aging Clin.Exp.Res. 2002;14:10–5.PubMedGoogle Scholar
  4. 4.
    Laukkanen P, Heikkinen E, Kauppinen M. Muscle strength and mobility as predictors of survival in 75–84-year-old people. Age Ageing 1995;24:468–73.PubMedCrossRefGoogle Scholar
  5. 5.
    Latham NK, Bennett DA, Stretton CM, Anderson CS. Systematic review of progressive resistance strength training in older adults. J.Gerontol.A Biol.Sci.Med.Sci. 2004;59:48–61.PubMedGoogle Scholar
  6. 6.
    Skelton DA, Young A, Greig CA, Malbut KE. Effects of resistance training on strength, power, and selected functional abilities of women aged 75 and older. J.Am.Geriatr.Soc. 1995;43:1081–7.PubMedGoogle Scholar
  7. 7.
    Onder G, Penninx BW, Balkrishnan R, Fried LP, Chaves PH, Williamson J et al. Relation between use of angiotensin-converting enzyme inhibitors and muscle strength and physical function in older women: an observational study. Lancet 2002;359:926–30.PubMedCrossRefGoogle Scholar
  8. 8.
    Di Bari M, van de Poll-Franse LV, Onder G, Kritchevsky SB, Newman A, Harris TB et al. Antihypertensive medications and differences in muscle mass in older persons: the Health, Aging and Body Composition Study. J.Am.Geriatr.Soc. 2004;52:961–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Abdulla J, Abildstrom SZ, Christensen E, Kober L, Torp-Pedersen C. A meta-analysis of the effect of angiotensin-converting enzyme inhibitors on functional capacity in patients with symptomatic left ventricular systolic dysfunction. Eur. J.Heart Fail. 2004;6:927–35.PubMedCrossRefGoogle Scholar
  10. 10.
    van Veldhuisen DJ, Genth-Zotz S, Brouwer J, Boomsma F, Netzer T, Man In T Veld AJ et al. Highversus low-dose ACE inhibition in chronic heart failure: a double-blind, placebo-controlled study of imidapril. J.Am.Coll.Cardiol. 1998;32:1811–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Pacher R, Stanek B, Globits S, Berger R, Hulsmann M, Wutte M et al. Effects of two different enalapril dosages on clinical, haemodynamic and neurohumoral response of patients with severe congestive heart failure. Eur.Heart J. 1996;17:1223–32.PubMedGoogle Scholar
  12. 12.
    Hutcheon SD, Gillespie ND, Crombie IK, Struthers AD, McMurdo ME. Perindopril improves six minute walking distance in older patients with left ventricular systolic dysfunction: a randomised double blind placebo controlled trial. Heart 2002;88:373–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Ahimastos AA, Lawler A, Reid CM, Blombery PA, Kingwell BA. Brief communication: ramipril markedly improves walking ability in patients with peripheral arterial disease: a randomized trial. Ann.Intern.Med. 2006;144:660–4.PubMedGoogle Scholar
  14. 14.
    Sumukadas D, Witham MD, Struthers AD, McMurdo ME. Effect of perindopril on physical function in elderly people with functional impairment: a randomized controlled trial. CMAJ. 2007;177:867–74.PubMedGoogle Scholar
  15. 15.
    Perera S, Mody SH, Woodman RC, Studenski SA. Meaningful change and responsiveness in common physical performance measures in older adults. J.Am.Geriatr.Soc. 2006;54:743–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Lord SR, Castell S, Corcoran J, Dayhew J, Matters B, Shan A et al. The effect of group exercise on physical functioning and falls in frail older people living in retirement villages: a randomized, controlled trial. J.Am.Geriatr.Soc. 2003;51:1685–92.PubMedCrossRefGoogle Scholar
  17. 17.
    Nelson ME, Layne JE, Bernstein MJ, Nuernberger A, Castaneda C, Kaliton D et al. The Effects of Multidimensional Home-Based Exercise on Functional Performance in Elderly People. J.Gerontol.A Biol.Sci.Med.Sci. 2004;59:M154-M160.Google Scholar
  18. 18.
    Walters SJ, Brazier JE. Comparison of the minimally important difference for two health state utility measures: EQ-5D and SF-6D. Qual.Life Res. 2005;14:1523–32.PubMedCrossRefGoogle Scholar
  19. 19.
    Morgan S, Smith H, Simpson I, Liddiard GS, Raphael H, Pickering RM et al. Prevalence and clinical characteristics of left ventricular dysfunction among elderly patients in general practice setting: cross sectional survey. BMJ 1999;318:368–72.PubMedGoogle Scholar
  20. 20.
    Zanchetti A, Cuspidi C, Comarella L, Rosei EA, Ambrosioni E, Chiariello M et al. Left ventricular diastolic dysfunction in elderly hypertensives: results of the APROS-diadys study. J.Hypertens. 2007;25:2158–67.PubMedGoogle Scholar
  21. 21.
    Lonn E, Shaikholeslami R, Yi Q, Bosch J, Sullivan B, Tanser P et al. Effects of ramipril on left ventricular mass and function in cardiovascular patients with controlled blood pressure and with preserved left ventricular ejection fraction: a substudy of the Heart Outcomes Prevention Evaluation (HOPE) Trial. J.Am.Coll.Cardiol. 2004;43:2200–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Newman AB, Gottdiener JS, Mcburnie MA, Hirsch CH, Kop WJ, Tracy R et al. Associations of subclinical cardiovascular disease with frailty. J.Gerontol.A Biol.Sci.Med.Sci. 2001;56:M158-M166.PubMedGoogle Scholar
  23. 23.
    Jondeau G, Katz SD, Zohman L, Goldberger M, McCarthy M, Bourdarias JP et al. Active skeletal muscle mass and cardiopulmonary reserve. Failure to attain peak aerobic capacity during maximal bicycle exercise in patients with severe congestive heart failure. Circulation 1992;86:1351–6.PubMedGoogle Scholar
  24. 24.
    Dinenno FA, Jones PP, Seals DR, Tanaka H. Limb blood flow and vascular conductance are reduced with age in healthy humans: relation to elevations in sympathetic nerve activity and declines in oxygen demand. Circulation 1999;100:164–70.PubMedGoogle Scholar
  25. 25.
    Proctor DN, Shen PH, Dietz NM, Eickhoff TJ, Lawler LA, Ebersold EJ et al. Reduced leg blood flow during dynamic exercise in older endurance-trained men. J.ApplPhysiol 1998;85:68–75.Google Scholar
  26. 26.
    Meijer WT, Hoes AW, Rutgers D, Bots ML, Hofman A, Grobbee DE. Peripheral arterial disease in the elderly: The Rotterdam Study. Arterioscler.Thromb.Vasc.Biol. 1998;18:185–92.PubMedGoogle Scholar
  27. 27.
    McDermott MM, Fried L, Simonsick E, Ling S, Guralnik JM. Asymptomatic peripheral arterial disease is independently associated with impaired lower extremity functioning: the women’s health and aging study. Circulation 2000;101:1007–12.PubMedGoogle Scholar
  28. 28.
    Drexler H. Effect of angiotensin-converting enzyme inhibitors on the peripheral circulation in heart failure. Am.J.Cardiol. 1992;70:50C-4C.PubMedCrossRefGoogle Scholar
  29. 29.
    Li J, Sinoway LI, Ng YC. Aging augments interstitial K+ concentrations in active muscle of rats. J.Appl.Physiol 2006;100:1158–63.PubMedCrossRefGoogle Scholar
  30. 30.
    Hool LC, Whalley DW, Doohan MM, Rasmussen HH. Angiotensin-converting enzyme inhibition, intracellular Naf, and Na(+)−K+ pumping in cardiac myocytes. Am.J.Physiol 1995;268:C366-C375.PubMedGoogle Scholar
  31. 31.
    Ottlecz A, Bensaoula T. Captopril ameliorates the decreased Na+,K(+)-ATPase activity in the retina of streptozotocin-induced diabetic rats. Invest Ophthalmol.Vis.Sci. 1996;37:1633–41.PubMedGoogle Scholar
  32. 32.
    Anwar A, Gaspoz JM, Pampallona S, Zahid AA, Sigaud P, Pichard C et al. Effect of congestive heart failure on the insulin-like growth factor-1 system. Am.J.Cardiol. 2002;90:1402–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Brink M, Price SR, Chrast J, Bailey JL, Anwar A, Mitch WE et al. Angiotensin n induces skeletal muscle wasting through enhanced protein degradation and down-regulates automne insulin-like growth factor I. Endocrinology 2001;142:1489–96.PubMedCrossRefGoogle Scholar
  34. 34.
    Maggio M, Ceda GP, Lauretani F, Pahor M, Bandinelli S, Najjar SS et al. Relation of angiotensin-converting enzyme inhibitor treatment to insulin-like growth factor-1 serum levels in subjects >65 years of age (the InCHIANTI study). Am.J.Cardiol. 2006;97:1525–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Henriksen EJ, Jacob S. Modulation of metabolic control by angiotensin converting enzyme (ACE) inhibition. J.Cell Physiol 2003;196:171–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Walker RJ, Lewis-Barned NJ, Edwards EA, Robertson MC. The effects of increasing doses of enalapril on insulin sensitivity in normotensive non-insulin dependent diabetic subjects. Aust.N.ZJ.Med. 1995;25:698–702.Google Scholar
  37. 37.
    Yavuz D, Koc M, Toprak A, Akpinar L Velioglu A, Deyneli O et al. Effects of ACE inhibition and ATI-receptor antagonism on endothelial function and insulin sensitivity in essential hypertensive patients. J.Renin.Angiotensin.Aldosterone.Syst 2003;4:197–203.PubMedCrossRefGoogle Scholar
  38. 38.
    Tezcan H, Yavuz D, Toprak A, Akpinar I, Koc M, Deyneli O et al. Effect of angiotensinconverting enzyme inhibition on endothelial function and insulin sensitivity in hypertensive patients. J.Renin.Angiotensin.Aldosterone.Syst. 2003;4:119–23.PubMedCrossRefGoogle Scholar
  39. 39.
    Galletti F, Strazzullo P, Capaldo B, Carretta R, Fabris F, Ferrara LA et al. Controlled study of the effect of angiotensin converting enzyme inhibition versus calcium-entry blockade on insulin sensitivity in overweight hypertensive patients: Trandolapril Italian Study (TRIS). J.Hypertens. 1999;17:439–45.PubMedCrossRefGoogle Scholar
  40. 40.
    Scheen AJ. Prevention of type 2 diabetes mellitus through inhibition of the Renin-Angiotensin system. Drugs 2004;64:2537–65.PubMedCrossRefGoogle Scholar
  41. 41.
    Laviades C, Gil MJ, Monreal I, Gonzalez A, Diez J. Tissue availability of insulin-like growth factor I is inversely related to insulin resistance in essential hypertension: effects of angiotensin converting enzyme inhibition. J.Hypertens. 1998;16:863–70.PubMedCrossRefGoogle Scholar
  42. 42.
    Rimbert V, Boirie Y, Bedu M, Hocquette JF, Ritz P, Morio B. Muscle fat oxidative capacity is not impaired by age but by physical inactivity: association with insulin sensitivity. FASEB J. 2004;18:737–9.PubMedGoogle Scholar
  43. 43.
    Kadi F, Charifi N, Denis C, Lexell J. Satellite cells and myonuclei in young and elderly women and men. Muscle Nerve 2004;29:120–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Charifi N, Kadi F, Feasson L, Denis C. Effects of endurance training on satellite cell frequency in skeletal muscle of old men. Muscle Nerve 2003;28:87–92.PubMedCrossRefGoogle Scholar
  45. 45.
    Cohn RD, van Erp C, Habashi JP, Soleimani AA, Klein EC., Lisi MT et al. Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states. NatMed. 2007;13:204–10.Google Scholar
  46. 46.
    Koh TJ, Tidball JG. Nitric oxide synthase inhibitors reduce sarcomere addition in rat skeletal muscle. JPhysiol 1999;519 Pt 1:189–96.CrossRefGoogle Scholar
  47. 47.
    Wang MX, Murrell DF, Szabo C, Warren RF, Sarris M, Murrell GA. Nitric oxide in skeletal muscle: inhibition of nitric oxide synthase inhibits walking speed in rats. NitricOxide. 2001;5:219–32.Google Scholar
  48. 48.
    Balagopal P, Schimke JC, Ades P, Adey D, Nair KS. Age effect on transcript levels and synthesis rate of muscle MHC and response to resistance exercise. Am.J.Physiol Endocrinol.Metab 2001;280:E203-E208.PubMedGoogle Scholar
  49. 49.
    Andersen JL. Muscle fibre type adaptation in the elderly human muscle. Scand.J.Med.Sci.Sports 2003;13:40–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Frontera WR, Hughes VA, Fielding RA, Fiatarone MA, Evans WJ, Roubenoff R. Aging of skeletal muscle: a 12-yr longitudinal study. J.Appl.Physiol 2000;88:1321–6.PubMedGoogle Scholar
  51. 51.
    Vescovo G, Dalla LL, Serafini F, Leprotti C, Facchin L, Volterrani M et al. Improved exercise tolerance after losartan and enalapril in heart failure: correlation with changes in skeletal muscle myosin heavy chain composition. Circulation 1998;98:1742–9.PubMedGoogle Scholar
  52. 52.
    Minami N, Li Y, Guo Q, Kawamura T, Mori N, Nagasaka M et al. Effects of angiotensinconverting enzyme inhibitor and exercise training on exercise capacity and skeletal muscle. J.Hypertens. 2007;25:1241–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Coirault C, Langeron O, Lambert F, Blanc FX, Lerebours G, Claude N et al. Impaired skeletal muscle performance in the early stage of cardiac pressure overload in rabbits: beneficial effects of angiotensin-converting enzyme inhibition. J.Pharmacol.Exp.Ther. 1999;291:70–5.PubMedGoogle Scholar
  54. 54.
    Conley KE, Jubrias SA, Esselman PC. Oxidative capacity and ageing in human muscle. JPhysiol 2000;526 Pt 1:203–10.CrossRefGoogle Scholar
  55. 55.
    Welle S, Bhatt K, Thornton CA. High-abundance mRNAs in human muscle: comparison between young and old. J.Appl.Physiol 2000;89:297–304.PubMedGoogle Scholar
  56. 56.
    de Cavanagh EM, Piotrkowski B, Basso N, Stella I, Inserra F, Ferder L et al. Enalapril and losartan attenuate mitochondrial dysfunction in aged rats. FASEB J. 2003;17:1096–8.PubMedGoogle Scholar
  57. 57.
    Boveris A, D’Amico G, Lores-Arnaiz S, Costa LE. Enalapril increases mitochondrial nitric oxide synthase activity in heart and liver. Antioxid.Redox.Signal. 2003;5:691–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Rouyer O, Zoll J, Daussin F, Damge C, Helms P, Talha S et al. Effect of angiotensinconverting enzyme inhibition on skeletal muscle oxidative function and exercise capacity in streptozotocin-induced diabetic rats. ExpPhysiol 2007;92:1047–56.Google Scholar
  59. 59.
    Zoll J, Monassier L, Gamier A, Nguessan B, Mettauer B, Veksler V et al. ACE inhibition prevents myocardial infarction-induced skeletal muscle mitochondrial dysfunction. J.Appl.Physiol 2006;101:385–91.PubMedCrossRefGoogle Scholar
  60. 60.
    Bahi L, Koulmann N, Sanchez H, Momken I, Veksler V, Bigard AX et al. Does ACE inhibition enhance endurance performance and muscle energy metabolism in rats? J.Appl.Physiol 2004;96:59–64.PubMedCrossRefGoogle Scholar
  61. 61.
    Renganathan M, Messi ML, Delbono O. Dihydropyridine receptor-ryanodine receptor uncoupling in aged skeletal muscle. J.Membr.Biol. 1997;157:247–53.PubMedCrossRefGoogle Scholar
  62. 62.
    Pouvreau S, Allard B, Berthier C, Jacquemond V. Control of intracellular calcium in the presence of nitric oxide donors in isolated skeletal muscle fibres from mouse. J.Physiol 2004;560:779–94.PubMedCrossRefGoogle Scholar
  63. 63.
    Sylven C, Jansson E, Cederholm T, Hildebrand IL, Beermann B. Skeletal muscle depressed calcium and phosphofructokinase in chronic heart failure are upregulated by captopril-a double-blind, placebo-controlled study. J.Intern.Med. 1991;229:171–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Renganathan M, Messi ML, Delbono O. Overexpression of IGF-1 exclusively in skeletal muscle prevents age-related decline in the number of dihydropyridine receptors. J.Biol.Chem. 1998;273:28845–51.PubMedCrossRefGoogle Scholar
  65. 65.
    Harms CA, Babcock MA, McClaran SR, Pegelow DF, Nickele GA, Nelson WB et al. Respiratory muscle work compromises leg blood flow during maximal exercise. J.Appl.Physiol 1997;82:1573–83.PubMedGoogle Scholar
  66. 66.
    Coirault C, Hagege A, Chemla D, Fratacci MD, Guerot C, Lecarpentier Y. Angiotensinconverting enzyme inhibitor therapy improves respiratory muscle strength in patients with heart failure. Chest 2001;119:1755–60.PubMedCrossRefGoogle Scholar
  67. 67.
    Myerson S, Hemingway H, Budget R, Martin J, Humphries S, Montgomery H. Human angiotensin I-converting enzyme gene and endurance performance. J.Appl.Physiol 1999;87:1313–6.PubMedGoogle Scholar
  68. 68.
    Kritchevsky SB, Nicklas BJ, Visser M, Simonsick EM, Newman AB, Harris TB et al. Angiotensin-converting enzyme insertion/deletion genotype, exercise, and physical decline. JAMA 2005;294:691–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J.Clin.Invest 1990;86:1343–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag France and Serdi Éditions 2008

Authors and Affiliations

  • D. Sumukadas
    • 1
  • M. D. Witham
    • 1
  • A. D. Struthers
    • 2
    • 1
  • M. E. T. Mcmurdo
    • 1
  1. 1.Ageing and Health, Division of Medicine and TherapeuticsNinewells Hospital and Medical SchoolDundee
  2. 2.Clinical Pharmacology, Division of Medicine and Therapeutics, Ninewells Hospital and Medical SchoolUniversity of DundeeDundeeScotland, UK

Personalised recommendations