Journal of Genetics

, 42:143 | Cite as

The evolution of the sex chromosomes

I. TheXO andX1X2Y mechanisms in praying mantids
  • M. J. D. White

8. Summary

1. The majority of the Mantoidea have anXO : XX sex-determining mechanism like that found in the other Orthopteroid groups. TheX seems to be without exception a mediocentric chromosome.

2. In one group of genera (subfamily Mantinaesensu stricto) anX 1 X 2 Y :X 1 X 1 X 2 X 2 mechanism has been developed. It may reasonably be assumed that this mechanism arose in the first place by a mutual translocation as a result of which a pair of autosomes became involved in the sex-determining mechanism.

3. The diploid chromosome numbers of the Mantids vary from 15 to 29 in the fifteen species which have been investigated. All theX 1 X 2 Y species studied (with the exception ofSphodromantis viridis) have 27 chromosomes.S. viridis has only 23.

4. In all the species studied meiosis seems to be of an anomalous type which differs in important respects from the process found in the Orthoptera Saltatoria. It seems impossible to determine by purely cytological means whether crossing-over occurs, since chiasmata are not seen.


Meiotic Division Polar View Thin Thread Autosomal Bivalents Milk Bottle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Asana, J. J. (1934). Studies on the chromosomes of Indian Orthoptera. IV. The idiochromosomes ofHierodula sp.Curr. Sci. 2, 244–5.Google Scholar
  2. Asana, J. J., Makino, S. &Niiyama, H. (1938). A chromosomal survey of some Indian insects. I. Morphology of the chromosomes in eight species of the Locustidae.J. Fact. Sci. Hokkaido Univ. Ser.VI,3, 211–34.Google Scholar
  3. Carothers, E. E. (1917). The segregation and recombination of homologous chromosomes as found in two genera of Acrididae (Orthoptera).J. Morph. 28, 445–520.CrossRefGoogle Scholar
  4. —— (1931). The maturation divisions and segregation of heteromorphic homologous chromosomes in Acrididae.Biol. Bull. Wood’s Hole,61, 324–49.CrossRefGoogle Scholar
  5. Darlington, C. D. (1934). Anomalous chromosome pairing in the maleDrosophila pseudoobscura.Genetics,19, 95–118.PubMedGoogle Scholar
  6. Darlington, C. D. (1936). Crossing-over and its mechanical relationships inChorthippus andStauroderus.J. Genet. 33, 465–500.CrossRefGoogle Scholar
  7. Giglio-Tos, E. (1927). Mantidae (Das Tierreich,50).Google Scholar
  8. Helwig, E. R. (1929). Chromosomal variations correlated with geographic distribution inCircotettix verruculatus (Orthoptera).J. Morph. 47, 1–36.CrossRefGoogle Scholar
  9. King, R. L. (1923). Heteromorphic homologous chromosomes in three species ofPseudotrimerotropis (Orthoptera: Acrididae).J. Morph. 38, 19–63.CrossRefGoogle Scholar
  10. —— (1931). Chromosomes of three species of Mantidae.J. Morph. 52, 523–33.Google Scholar
  11. King, R. L. &Beams, H. W. (1938). The multiple chromosomes ofParatylotropidia brunneri Scudder (Orthoptera: Acrididae).J. Morph. 63, 289–300.CrossRefGoogle Scholar
  12. Klingstedt, H. (1933). Chromosomenstudien an Neuropteren. I. Ein Fall von heteromorphen Chromosomenpaaren als Beispiel vom Mendeln der Chromosomen.Mem. Soc. Fauna Flora Fenn. 10, 2–11.Google Scholar
  13. McClung, C. E. (1917). The multiple chromosomes ofHesperotettix andMermiria.J. Morph. 29, 519–605.CrossRefGoogle Scholar
  14. —— (1928). Differential chromosomes ofMecostethus gracilis.Z. Zellforsch. 7, 756–78.CrossRefGoogle Scholar
  15. Morse, M. (1909). The nuclear components of the sex-cells of four species of cock-roaches.Arch. Zellforsch. 3, 483–520.Google Scholar
  16. Muller, H. J. (1940). Bearings of the Drosophila work on systematics. (Article inThe New Systematics, edited by Julian Huxley, Oxford Univ. Press.)Google Scholar
  17. Oguma, K. (1921). The idiochromosomes of the mantis.J. Coll. Agric. Sapporo,10, 1–27.Google Scholar
  18. Stevens, N. M. (1908). A study of the germ cells of certain Diptera with reference to the heterochromosomes and phenomena of synapsis.J. exp. Zool. 5, 359–74.CrossRefGoogle Scholar
  19. Wenrich, D. H. (1916). The spermatogenesis ofPhrynotettix magnus with special reference to synapsis and the individuality of the chromosomes.Bull. Mus. comp. Zool. Harv. 60, 57–135.Google Scholar
  20. White, M. J. D. (1933). Tetraploid spermatocytes in a locust,Schistocerca gregaria.Cytologia, Tokyo,5, 135–9.Google Scholar
  21. —— (1938). A new and anomalous type of meiosis in a Mantid,Callimantis antillarum Saussure.Proc. Roy. Soc. B,125, 516–23.Google Scholar
  22. —— (1940a). The heteropycnosis of sex chromosomes and its interpretation in terms of spiral structure.J. Genet. 40, 67–82.Google Scholar
  23. —— (1940b). The origin and evolution of multiple sex chromosome mechanisms.J. Genet. 40, 303–36.Google Scholar
  24. Williams, E. C. (1938). Spermatogenesis of a mantid,Choeradodis rhombicollis (Latreille).Trans. Amer. micr. Soc. 57, 387–94.CrossRefGoogle Scholar
  25. Zeuner, F. E. (1939).Fossil Orthoptera Ensifera. London: British Museum, Natural History.Google Scholar

Copyright information

© Indian Academy of Sciences 1941

Authors and Affiliations

  • M. J. D. White
    • 1
  1. 1.University CollegeLondon

Personalised recommendations