Skip to main content
Log in

Numerical analysis of a weak shock wave propagating in a medium using lattice boltzmann method (LBM)

  • Published:
KSME International Journal Aims and scope Submit manuscript

Abstract

This study introduced a lattice Boltzmann computational scheme capable of modeling thermo hydrodynamic flows with simpler equilibrium particle distribution function compared with other models. The equilibrium particle distribution function is the local Maxwelian equilibrium function in this model, with all the constants uniquely determined. The characteristics of the proposed model is verified by calculation of the sound speeds, and the shock tube problem. In the lattice Boltzmann method,a thermal fluid or compressible fluid model simulates the reflection of a weak shock wave colliding with a sharp wedge having various angles θw. Theoretical results using LBM are satisfactory compared with the experimental result or the TVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

Particle velocity

c s :

Sound speed

e :

Internal energy

f σi (t,r) :

Particle distribution function onr att

P :

Pressure

R :

Radius of curvature

R* :

Gas constant

r :

Lattice node

T :

Absolute temperature

t :

Time

u a :

Fluid velocity

γ :

Coefficient of specific heats

ɛ :

Knudsen number

X :

Thermal conductivity

λ :

Second viscosity

μ :

Viscosity

ρ :

Density

σ :

Number of speeds of particles

τ :

Time increment

φ :

Relaxation parameter

Ω :

Collision operator

αβγ:

Cartesian coordinate

References

  • Alexander, F. J., Chen, S. and Sterling, D. J., 1993, “Lattice Boltzmann thermodynamics,” Physical Review E, Vol.47, pp. 2249–2252.

    Article  Google Scholar 

  • Chen, H., Chen, S. and Matthaeus, W. H., 1992, “Recovery of the Navier-Stokes Equations Using a Lattice-Gas Boltzmann Method,” Physical Review A, Vol. 45, pp. R5339–5342.

    Article  Google Scholar 

  • Chen, Y., Ohashi, H. and Akiyama, M., 1994, “Thermal Lattice Bhatnagar Gross Krook Model without Nonlinear Deviations in Macrodynamic Equations,” Physical Review E, Vol. 50, pp. 2776–2783.

    Article  Google Scholar 

  • Cornubert, R., d’Humiere, D. and Levermoer, D., 1991, “A Knudsen layer theory for lattice gases,” Physica D, Vol. 47, pp. 241–259.

    Article  MathSciNet  Google Scholar 

  • Frisch, U., Hasslacher, B. and Pomeau, Y., 1986, “Lattice-Gas Automata for the Navier- Stokes Equation,” Physical Review Letters, Vol. 55, pp. 1505–1508.

    Article  Google Scholar 

  • Gabic, B. D., 1992, “Shock Wave Reflection Phenomena,” Springer Verlag.

  • McNamara, G. and Zannetti, G., 1988, “Use of the Boltzmann Equation to Simulate Lattice Gas Automata,” Physical Review Letters, Vol. 61, pp. 2332–2335.

    Article  Google Scholar 

  • Qain, Y. H., D’Humieres, D. and Lallemand, P., 1992, “Lattice BGK. models for Navier-Stokes Equation,” Europhysis Letters, Vol. 17, pp. 479–484.

    Article  Google Scholar 

  • Rothman, D. H. and Zaleski, S., 1997, “Lattice-Gas Celluar Automata-Simple Models of Complex Hydrodynamics,” Cambridge University Press.

  • Sasoh, A., Takayama, K. and Saito, T., 1992, “A weak shock wave reflection over wedge,” Shock Waves 2, pp. 277–281.

    Article  Google Scholar 

  • Tsutahara, M. and Kang, H. K., 2002, “A Discrete Effect of the Thermal Lattice BGK Model,” Journal of Statistical Physics, Vol. 107, No. 112, pp. 479–498.c s

    Article  Google Scholar 

  • Wolf-Gladrow, D. A., 2000, “Lattice-gas Cel- lular Automata and Lattice Boltzmann Models,” Lecture Notes in Mathematics, Springer.M s

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-Keun Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, HK., Tsutahara, M., Ro, KD. et al. Numerical analysis of a weak shock wave propagating in a medium using lattice boltzmann method (LBM). KSME International Journal 17, 2034–2041 (2003). https://doi.org/10.1007/BF02982444

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02982444

Key Words

Navigation