Journal of Genetics

, 30:233 | Cite as

Autosomal colour mosaics in the budgerigar

  • F. A. E. Crew
  • Rowena Lamy


1. Seventeen autosomal colour mosaics in the budgerigar (Melopsittacus undulatus) are described: sixteen of these being “half-siders.” It is suggested that every one of them is the result of the elimination of the “blue” autosome.

2. The chromosome number is 50–60. There are three size classes: theX-chromosome is large: only oneX is present in the female. The very considerable number of small dot-like chromosomes makes it impossible to determine with certainty the actual number, and also to recognise chromosome loss. The large chromosomes show lagging.


Body Colour Large Chromosome Plumage Colour Chromosome Elimination Hermaphroditism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anon (1933). “Wieder am Erfolg in der Zucht der Halfseiter.”Der Wellensittich, No. 21, 201–2. Hannover-Linden.Google Scholar
  2. Boveri, Th. (1888). “Ueber partielle Befruchtung.”S.B. Ges. Morph. Physiol. München,4, 64–72.Google Scholar
  3. Crew, F. A. E. (1932). “A case of leg colour asymmetry in the fowl.”J. Genet. 25, 359–65.Google Scholar
  4. —— (1933). “A case of non-disjunction in the fowl.”Proc. roy. Soc. Edin. 53, 89–100.Google Scholar
  5. Doncaster, L. (1914).The determination of sex. Cambridge.Google Scholar
  6. Duncker, H. (1928). “Die Vererbung der Farben bei Wellensittichen.”Vögel ferner Länder,1.Google Scholar
  7. Duncker, H. (1933).Dr H. Duncker’s Lists of Budgerigar Matings. Budgerigar Society. Edited by T. S. Elliot. Obtainable from Hon. Sec. of the Budgerigar Society, Mr H. C. Humphries, Bransgore, Headswell Avenue, Bournemouth.Google Scholar
  8. Hampe, H. (1934). “Die wissenschaftlichen Grundlagen der Farbenwellensittichzucht.”Vögel ferner Länder,8, 81–95.Google Scholar
  9. Morgan, T. H. (1905). “An alternative interpretation of gynandromorphism in insects.”Science,21, 632–4.PubMedCrossRefGoogle Scholar
  10. Morgan, T. H. andBridges, C. B. (1919). “The origin of gynandromorphs.”Publ. Carnegie Instn, No. 278, 87 pp.Google Scholar
  11. Poll, H. (1909). “Zur Lehre von den sekundären Geschlechtscharakteren.”S.B. Ges. naturf. Fr. Berl. 6, 331–58.Google Scholar
  12. Sokolow, N. N. undTrofimow, I. E. (1933). “Individualität der Chromosomen und Geschlechtsbestimmung beim Haushuhn (Gallus domesticus).”Z. indukt. Abstamm.- u. VererbLehre,65, 327–52.CrossRefGoogle Scholar
  13. Steiner, H. (1932). “Vererbungsstudien am Wellensittich.”Arch. Klaus-Stift. Vererb.-Forsch. 7, 37–202.Google Scholar
  14. Werner, O. (1927). “The chromosomes of the Indian Runner Duck.”Biol. Bull. 52, 330–72.CrossRefGoogle Scholar
  15. —— (1931). “The chromosomes of the domestic turkey.”Biol. Bull. Wood’s Hole,61, 157–64.CrossRefGoogle Scholar
  16. Weston, D. (1932). “Another piebald budgerigar.”Budgerigar Bull. 22, 3.Google Scholar
  17. White, M. J. D. (1932). “The chromosomes of the domestic chicken.”J. Genet. 26, 345–50.CrossRefGoogle Scholar
  18. Wolthers, J. H. (1933). “Notes from Holland.”Budgerigar Bull. 24, 13–16.Google Scholar

Copyright information

© Indian Academy of Sciences 1935

Authors and Affiliations

  • F. A. E. Crew
    • 1
  • Rowena Lamy
    • 1
  1. 1.Institute of Animal GeneticsUniversity of EdinburghUK

Personalised recommendations