Skip to main content

Advertisement

Log in

MLL Gene Rearrangement in Acute Myelogenous Leukemia After Exposure to Tegafur/Uracil

  • Case Report
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

We report a case of acute myelogenous leukemia (AML) withMLL (myeloid-lymphoid leukemia or mixed-lineage leukemia) gene rearrangement after exposure to tegafur/uracil. Cytogenetic and clinical findings in this patient: t(11;17) (q23;q25), AML-M4 morphology, development of AML within a short latent period after first exposure to tegafur/uracil, and good response to remission induction chemotherapy but short remission duration, have been considered typical features of therapy-related acute myelogenous leukemia (t-AML) after exposure to topoisomerase II—targeting agents. This case report suggests that t-AML may develop after exposure to tegafur/uracil and thatMLL gene rearrangement may not necessarily be specific to t-AML after exposure to topoisomerase II—targeting agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Referencess

  1. Le Beau MM, Albain KS, Larson RA, et al. Clinical and cytogenetic correlations in 63 patients with therapy-related myelodysplastic syndromes and acute nonlymphocytic leukemia: further evidence for characteristic abnormalities of chromosomes no. 5 and 7.J Clin Oncol. 1986;4:325–345.

    Article  PubMed  Google Scholar 

  2. Pedersen-Bjergaard J, Pedersen M, Roulston D, Philip P. Different genetic pathways in leukemogenesis for patients presenting with therapy-related myelodysplasia and therapy-related acute myeloid leukemia.Blood. 1995;86:3542–3552.

    PubMed  CAS  Google Scholar 

  3. Pedersen-Bjergaard J, Philip P, Larsen SO, et al. Therapy-related myelodysplasia and acute myeloid leukemia. Cytogenetic characteristics of 115 consecutive cases and risk in seven cohorts of patients treated intensively for malignant diseases in the Copenhagen series.Leukemia. 1993;7:1975–1986.

    PubMed  CAS  Google Scholar 

  4. Gill Super HJ, McCabe NR, Thirman MJ, et al. Rearrangements of the MLL gene in therapy-related acute myeloid leukemia in patients previously treated with agents targeting DNA-topoisomerase II.Blood. 1993;82:3705–3711.

    Google Scholar 

  5. Ratain MJ, Kaminer LS, Bitran JD, et al. Acute nonlymphocytic leukemia following etoposide and cisplatin combination chemotherapy for advanced non-small-cell carcinoma of the lung.Blood. 1987;70:1412–1417.

    PubMed  CAS  Google Scholar 

  6. Ratain MJ, Rowley JD. Therapy-related acute myeloid leukemia secondary to inhibitors of topoisomerase II: from the bedside to the target genes.Ann Oncol. 1992;3:107–111.

    Article  PubMed  CAS  Google Scholar 

  7. Nakajima T. Review of adjuvant chemotherapy for gastric cancer.World J Surg. 1995;19:570–574.

    Article  PubMed  CAS  Google Scholar 

  8. Wada H, Hitomi S, Teramatsu T. Adjuvant chemotherapy after complete resection in non-small-cell lung cancer. West Japan Study Group for Lung Cancer Surgery.J Clin Oncol. 1996;14:1048–1054.

    Article  PubMed  CAS  Google Scholar 

  9. Carver JH, Hatch FT, Branscomb EW. Estimating maximum limits to mutagenic potency from cytotoxic potency.Nature. 1979;279:154–156.

    Article  PubMed  CAS  Google Scholar 

  10. Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial.Blood. 1998;92:2322–2333.

    PubMed  CAS  Google Scholar 

  11. Bower M, Parry P, Carter M, et al. Prevalence and clinical correlations of MLL gene rearrangements in AML-M4/M5.Blood. 1994;84:3776–3780.

    PubMed  CAS  Google Scholar 

  12. Tien HF, Hsiao CH, Tang JL, et al. Characterization of acute myeloid leukemia with MLL rearrangements—no increase in the incidence of coexpression of lymphoid-associated antigens on leukemic blasts.Leukemia. 2000;14:1025–1030.

    Article  PubMed  CAS  Google Scholar 

  13. Takeyama K, Seto M, Uike N, et al. Therapy-related leukemia and myelodysplastic syndrome: a large-scale Japanese study of clinical and cytogenetic features as well as prognostic factors.Int J Hematol. 2000;71:144–152.

    PubMed  CAS  Google Scholar 

  14. Turker A, Guler N. Therapy related acute myeloid leukemia after exposure to 5-fluorouracil: a case report.Hematol Cell Ther. 1999;41:195–196.

    Article  CAS  PubMed  Google Scholar 

  15. Shimano S, Murayama K, Katahira H, Tsuchiya J. A retrospective study of acute myelogenous leukemia and myelodysplastic syndrome cases—clinical and hematological findings [in Japanese].Jpn J Cancer Clin. 1994;40:175–179.

    Google Scholar 

  16. Komatsu T, Yamazaki H, Shimada N, Nakajima M, Yokoi T. Roles of cytochromes P450 1A2, 2A6, and 2C8 in 5-fluorouracil formation from tegafur, an anticancer prodrug, in human liver micro-somes.Drug Metab Dispos. 2000;28:1457–1463.

    CAS  PubMed  Google Scholar 

  17. Heidelberger C, Danenberg PV, Moran RG. Fluorinated pyrimidines and their nucleosides.Adv Enzymol Relat Areas Mol Biol. 1983;54:58–119.

    CAS  PubMed  Google Scholar 

  18. Maraschin J, Dutrillaux B, Aurias A. Chromosome aberrations induced by etoposide (VP-16) are not random.Int J Cancer. 1990;46:808–812.

    Article  CAS  PubMed  Google Scholar 

  19. Broeker PLS, Super HG, Thirman MJ et al. Distribution of 11q23 breakpoints within the MLL breakpoint cluster region in de novo acute leukemia and in treatment-related acute myeloid leukemia: correlation with scaffold attachment regions and topoisomerase II consensus binding sites.Blood. 1996;87:1912–1922.

    PubMed  CAS  Google Scholar 

  20. Liu LF. DNA topoisomerase poisons as antitumor drugs.Annu Rev Biochem. 1989;58:351–375.

    Article  PubMed  CAS  Google Scholar 

  21. Pommier Y, Zwelling LA, Kao-Shan CS, Whang-Peng J, Bradley MO. Correlations between intercalator-induced DNA strand breaks and sister chromatid exchanges, mutations, and cytotoxicity in Chinese hamster cells.Cancer Res. 1985;45:3143–3149.

    PubMed  CAS  Google Scholar 

  22. Krynetskaia NF, Cai X, Nitiss JL, Krynetski EY, Relling MV. Thioguanine substitution alters DNA cleavage mediated by topoisomerase II.FASEB J. 2000;14:2339–2344.

    Article  PubMed  CAS  Google Scholar 

  23. Osaka M, Rowley JD, Zeleznik-Le NJ. MSF (MLL septin-like fusion), a fusion partner gene of MLL, in a therapy-related acute myeloid leukemia with a t(11;17)(q23;q25).Proc Natl Acad Sci U S A. 1999;96:6428–6433.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Taki T, Ohnishi H, Shinohara K, et al. AF17q25, a putative septin family gene, fuses the MLL gene in acute myeloid leukemia with t(11;17)(q23;q25).Cancer Res. 1999;59:4261–4265.

    PubMed  CAS  Google Scholar 

  25. Megonigal MD, Rappaport EF, Jones DH, et al. T(11;22) (q23;q11.2) in acute myeloid leukemia of infant twins fuses MLL with hCDCrel, a cell division cycle gene in the genomic region of deletion in DiGeorge and velocardiofacial syndromes.Proc Natl Acad Sci U S A. 1998;95:6413–6418.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Fukushima.

About this article

Cite this article

Fukushima, T., Yoshio, N., Noto, Y. et al. MLL Gene Rearrangement in Acute Myelogenous Leukemia After Exposure to Tegafur/Uracil. Int J Hematol 75, 178–181 (2002). https://doi.org/10.1007/BF02982024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02982024

Key words

Navigation