Skip to main content
Log in

Cytogenetic analysis of the action of carcinogens and tumour inhibitors inDrosophila melanogaster V. Differential genetic response to the alkylating mutagens and x-radiation

With one text-figure

  • Published:
Journal of Genetics Aims and scope Submit manuscript

Summary

  1. 1.

    Chemical mutagens have been shown to act on gene loci which are apparently stable to X-radiation. By the use of a group of alkylating compounds it was possible to induce nearly 200 ‘new’ sex-linked recessive visibles (ranks 1 and 2), different in phenotype and genetic position from those induced by the physical agent.

  2. 2.

    The ratio of sex-linked recessive visibles/lethals in the same sample of treated chromosornes is exceptionally high for a particular amino-acid mustard (p-N-di(chloroethyl)phenylalanine); which mutates 2–3 times as many morphogenesis loci (relative to lethals) as X-rays or any other alkylating compound.

  3. 3.

    The distribution of the loci of recessive lethals along the X-chromosome is the same for three representative alkylating mutagens, and is significantly different from that for X-rays. A significant difference also occurs in the distribution of theF 1 viable breaks induced by an imine (tri(ethyleneimino)triazine) as compared to X-radiation.

  4. 4.

    The rate of induction of small deficiencies by the alkylating compounds is nearly twice that produced by mutagenically equivalent doses of X-rays. Evidence is available that chemically induced deficiencies result from errors in gene reproduction rather than chromosome breaks.

  5. 5.

    There is a shortage in major structural rearrangements in viable sperm, as well as among the sex-linked recessive lethals, under the effect of the alkylating agents compared with mutagenically equivalent doses of X-rays. This shortage, in the case of the tri(ethyleneimino)triazine rearrangement lethals, has been shown to be due to differences in the properties of the chromosome breaks induced by the imine and X-rays, rather than a lower efficiency in the induction of the primary chromosome breaks by the chemical agent.

  6. 6.

    The dose effects as regards the induction of sex-linked recessive lethals, dominant lethals and viable chromosome breaks, are identical for tri(ethyleneirnmo)triazne and X-rays. This suggests that the hypothesis of direct action of radiations on the genetic material is not conclusively proved by evidence based solely on dose relations.

  7. 7.

    Among the sex-linked recessive lethals induced by various closes of tri(ethyleneimiao)triazine there is a fixed proportion showing cytoiogically detectable chromosome aberrations: major rearrangements and deficiencies. Within this fixed proportion, the fraction with rearrangements increases and that with deficiencies decreases with increase in dose. The bearing of this observation on the mechanism of induction of chromosome breaks by chemical means has been outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auerbach.C. (1949). Chemical mutagenesis.Biol. Rev.24. 355.

    Article  PubMed  CAS  Google Scholar 

  • Auerbach, C. &Moser, H. (1953). An analysis of the mutagenic action of formaldehyde-food. I. Sensitivity ofDrosophila germ cells.Z. indukt. Abstamm. u. VererbLehre,85. 479.

    Article  CAS  Google Scholar 

  • Auerbach, C. &Robson, J. M. (1947). The production of mutations by chemical substances.Proe. Roy. Soc.Edinb. B,62 271.

    CAS  Google Scholar 

  • Bird, M. J. &Fahmy, O. G. (1953). Cytogenetic analysis of the action of carcinogens and tumour inhibitors inDrosophila mdanogaster. I. 1:2, 3:4-diepoxybutane.Proc. Roy. Soc. B,140, 556.

    CAS  Google Scholar 

  • Bridges, C. B. (1938). Revised map of the salivary gland X-chxomosome ofDrosophila mdanogaster.J.Hered.29, 11.

    Google Scholar 

  • Catoheside, D. G. (1948). Genetic effects of radiations.Advanc. Genet.2.

  • Delbrück, M. (1935). über die Natur der Genmutation und der Genstruktur. Fritter Teil: Atomphysi kalisches Miodell der Genmutabion.Nachr. Ges. Wiss. Göttingen (Math.-phys. KL, Biol.),1. 223.

    Google Scholar 

  • Demetec, M. (1937). Relationship between various chromosomal changes inDrosophila melanogaster.Cytologia, Fujii Jubil. vol. p. 1125.

  • Demerec, M. (1955). What is a gene? Twenty years later.Amer. Nat.89. 5.

    Article  Google Scholar 

  • Famy, O. G. &Bird, M. J. (1953). Chromosome breaks among recessive lethals induced by chemical mutagens inDrosophila mdanogaster.Heredity, Suppl.6, 149.

    Google Scholar 

  • Fahmy, O. G. &Fahmy, M, J. (1954). Cytogenetic analysis of the action of carcinogens and tumou inhibitors inDrosophila melanogasler. II. The mechanism of induction of dominant lethals by 2:4:6-tri(etkyleneimino)-1:3:5-triazine.J. Genet.52, 603.

    CAS  Google Scholar 

  • Fahmy, O. G. &Fahmy, M. J. (1955a). Cytogenetic analysis of the action of carcinogens and tumour inhibitcors inDrosophila melanogaster. III. Chromosome structural changes induced by 2:4:6-tri-(ethyleueimino)-l:3:5-tnazine.J. Genet.53, 181.

    Article  CAS  Google Scholar 

  • Fahmy, O. G. &Fahhy, M. J. (1956). Cytogenetic analysis of the action of carcinogens and tumour inhibitors inDrosophila melanogaster. IV. The cell stage during spermatogenesis and the induction of intra- and intergenic mutations by 2:4:6-tri(ethyIeneininio)-l:3:5-triazine.J. Genet.53, 563.

    Article  Google Scholar 

  • Ford, C. E. (1949). Chromosome breakage in nitrogen mustard treatedVicia faba root tips cells.Proc. Sth Int. Cong. Genet. Suppl. to Hereditas, p. 570.

  • Fricke, H. &Demerec, M. (1937). The influence of wave-length on genetic effects of X-rays.Proc. Nat Acad. Sci., Wash.,23 320.

    Article  CAS  Google Scholar 

  • Gray, L. H. (1952). Actions of radiations on living cells, 1946 and after. The Second Douglas Lea Memorial lecture.Brit. J. Radiol.25, 235.

    PubMed  CAS  Google Scholar 

  • Gray, L. H. (1953). Characteristics of chromosome breakage by different agents.Heredity, Suppl.6, 311.

    Google Scholar 

  • Gustaesson, A. &Mackey, J. (1948). The genetical effects of mustard gas substances and neutrons.Hereditas, Lund,34 371.

    Article  Google Scholar 

  • Kaufmann.B. P. (1946). Organization of the chromosome. I. Break distribution and chromosome recombination inDrosophila melanogaster.J. Exp. Zool.102, 293.

    Article  CAS  PubMed  Google Scholar 

  • Muller, H. J. (1927). Artificial transmutation of the gene.Science,66, 84.

    Article  PubMed  CAS  Google Scholar 

  • Muller, H. J. (1940). An analysis of the process of structural change in chromosomes ofDrosophila.J. Genet.40, 1.

    Google Scholar 

  • Muller, H. J. (1951). The development of the gene theory. Chapter inGenetics in the 20th Century. New York: The Macmillan Co.

    Google Scholar 

  • Muller, H. J. (1952). Gene mutations caused by radiation.Symposium on Radiology, Nat. Acad. Sci., New York: J. Wiley and Son.

    Google Scholar 

  • Oliver, C. P. (1932). An analysis of the effect of varying the duration of X-ray treatment upon the frequency of mutations.Z. indukt. Abstamm.- u. VererbLehre,61, 447.

    Article  Google Scholar 

  • Rapoprt, J. A. (1946). Carbonyl compounds and the chemical mechanism of mutations.G.R. Acad. Sci. U.R.S.S., N.S.,54, 65.

    Google Scholar 

  • Revell, S. H. (1953). Chromosome breakage by X-rays and radiomimetio substances inVicia.Heredity, Suppl.6, 107.

    Google Scholar 

  • Slizynska, H. &Slizyhski, B. M. (1947). Genetical and cytological studies of lethals induced by chemical treatment inDrosopkila melanogaster.Proc. Roy. Soc. Edinb. B,62, 234.

    CAS  Google Scholar 

  • Smith, C. A. B. (1952). A simplified heterogeneity test.Ann. Eugen., Loud.,17, 35.

    CAS  Google Scholar 

  • Spencer, W. P. &Stern, C. (1948). Experiments to test the validity of the linear r.-dose/mutation frequency inDrosophila at low dosage.Genetics,33, 43.

    Google Scholar 

  • Thoday, J. M. (1953). Sister-union isolocus breaks in irradiatedVicia faba.Heredity, Suppl.6, 299.

    Google Scholar 

  • Timoe éefe-Ressovsey, N. W. &Delbr ück, M. (1936). Strahlengenetische Versuche über sichtbare Mntationen und die Mutabilität einzelner Gene beiDrosophila melanogaster.Z. indukt. Abstamm.- u. VererbLehre,71, 322.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahmy, O.G., Fahmy, M.J. Cytogenetic analysis of the action of carcinogens and tumour inhibitors inDrosophila melanogaster V. Differential genetic response to the alkylating mutagens and x-radiation. J Genet 54, 146–164 (1956). https://doi.org/10.1007/BF02981707

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02981707

Keywords

Navigation