Advertisement

Archives of Pharmacal Research

, Volume 17, Issue 4, pp 269–272 | Cite as

Inhibitory effect of the root ofCoptis japonica on catecholamine biosynthesis in PC12 cells

  • Myung Koo Lee
  • Woo Kyu Park
  • Hack Seang Kim
Research Articles

Abstract

The effect of the root ofCoptis japonica (COPT), both the dichloromethane soluble (CH2Cl2) and insoluble (H2O) fractions, on catecholamine contents and tyrosine hydroxylase (TH) activity in PC12 cells was investigated. CH2Cl2 and H2O fractions showed 21 and 53% inhibitions on dopamine content, respectively, at a concentration of 40 μg/ml in medium: the H2O fraction provided a greater inhibitory effect. The TH activity was reduced by the treatment of COPT (H2O fraction). These results suggest that COPT has an inhibitory effect on the catecholamine biosynthesis by the reduction of TH activity in PC12 cells.

Key words

Coptis japonica Catecholamines Tyrosine Hydroxylase PC12 cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Chen, H. C. and Hsieh, M. T., Two-year experience with “San-Huang-Hsih-Tang” in essential hypertension.Amer. J. Chin. Med., 14, 51–58 (1986).CrossRefGoogle Scholar
  2. Franzblau, S. G. and Cross, C., Comparativein vitro antimicrobial activity of chinese medicinal herbs.J. Ethnopharmacol., 15, 279–288 (1986).PubMedCrossRefGoogle Scholar
  3. Fukushima, M. and Kimura, S., Studies on cosmetic ingredients from crude drugs. I. Inhibition of tyrosinase activity by crude drugs.Shoyakugaku Zasshi, 43, 142–147 (1989).Google Scholar
  4. Greene, L. A. and Rein, G., Short-term regulation of catecholamine biosynthesis in a nerve growth factor responsive clonal line of rat pheochromocytoma cells.J. Neurochem., 30, 549–555 (1977).CrossRefGoogle Scholar
  5. Hirai, Y., Takase, H., Kobayashi, H., Yamamoto, M., Fujioka, N., Kohda, H., Yamasaki, K., Yasuhara, T. and Nakajima, T., Screening test for anti-inflammatory crude based on inhibition effect of histamine release from mast cell.Shoyakugaku Zasshi, 37, 374–380 (1983).Google Scholar
  6. Hong, N. D., Koo, B. H., Joo, S. M. and Lee, S. K., Studies on the efficacy of combined praparation of crude drugs (XXXVI), Effects of SIPMIDOJUKSAN on the central nervous and cardiovascular system.Kor. J. Pharmacogn., 19, 141–151 (1988).Google Scholar
  7. Hwang, Y. J., Lee, S. H., Kim, H. S., Lee, K. S., Ro, J. S. and Lee, M. K., Effects of herbal drugs on bovine adrenal tyrosine hydroxylase and dopamine β-hydroxylase (II).Kor. J. Pharmacogn., 25, 194–197 (1994).Google Scholar
  8. Kim, J. H., Lee, S. J., Han, Y. B. and Kim, J. B., Identification of active component isolated fromCroton tiglium andCoptis japonica aqueous mixture (CP2) and studies of its cytotoxic effect.Yakhak Hoeji, 38, 31–37 (1994).Google Scholar
  9. Kumazawa, N., Ohta, S., Tu, S. H., Kamogawa, A. and Shinoda, M., Protective effects of various methanol extracts of crude drugs on experimental hepatic injury induced by α-naphthylisothiocyanate in rats.Yakugaku Zasshi, 111, 199–204 (1991).PubMedGoogle Scholar
  10. Lewis, E. J., Harrington, C. A. and Chikaraishi, D. M., Transcriptional regulation of the tyrosine hydroxylase gene by glucocorticoid and cyclic AMP.Proc. Natl. Acad. Sci. USA, 84, 3550–3554 (1987).PubMedCrossRefGoogle Scholar
  11. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J., Protein measurement with the Folin phenol reagent.J. Biol. Chem., 193, 265–275 (1951).PubMedGoogle Scholar
  12. Lee, M. K., Nohta, H. and Ohkura, Y., Occurrence of aromatic L-amino acid decarboxylase in human plasma and its assay by high-performance liquid chromatography with fluorescence detection.J. Chromatogr., 378, 329–336 (1986).PubMedCrossRefGoogle Scholar
  13. Mitsui, A., Nohta, H. and Ohkura, Y., High-performance liquid chromatography of plasma catecholamines using 1,2-diphenylethylenediamine as precolumn fluorescence derivatization reagent.J. Chromatogr., 344, 61–70 (1985).PubMedCrossRefGoogle Scholar
  14. Nagatsu, T., Oka, K. and Kato, K., Highly sensitive assay for tyrosine hydroxylase activity by high-performance liquid chromatography.J. Chromatogr., 163, 247–252, (1979).PubMedCrossRefGoogle Scholar
  15. Riberio, P., Pigeon, D. and Kaufman, S., The hydroxylation of phenylalanine and tyrosine by tyrosine hydroxylase from cultured pheochromocytome cells.J. Biol. Chem., 266, 16207–16211 (1991).Google Scholar
  16. Stachowiak, M. K., Rigual, R. J., Lee, P. H. K., Viveros, O. H. and Hong, J. S., Regulation of tyrosine hydroxylase and phenolethanolamine N-methyltransferase mRNA levels in the sympathoadrenal system by the pituitary-adrenocortical axis.Mol. Brain Res., 3, 275–286 (1988).CrossRefGoogle Scholar
  17. Takase, H., Imanishi, K., Miura, O. and Yumioka, E., A possible mechanism for the gastric mucosal protection by OREN-GEDOKU-TO (OGT), A traditional herbal medicine.Jpn. J. Pharmacol., 51, 17–23 (1987).CrossRefGoogle Scholar
  18. Tischler, A. S., Perlman, R. L., Morse, G. M. and Sheard, B. E., Glucocorticoids increase catecholamine synthesis and storage in PC12 pheochromocytoma cell cultures.J. Neurochem., 40, 364–370 (1983).PubMedCrossRefGoogle Scholar
  19. Yamahara, J., Behavioral pharmacology of berberine-type alkaloids(1), Central depressive action of Coptidis Rhizoma and its constituents.Nippon Yakurigaku Zasshi, 72, 899–908 (1976).PubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 1994

Authors and Affiliations

  • Myung Koo Lee
    • 1
  • Woo Kyu Park
    • 1
  • Hack Seang Kim
    • 1
  1. 1.College of PharmacyChungbuk National UniversityCheongjuKorea

Personalised recommendations