Archives of Pharmacal Research

, Volume 30, Issue 10, pp 1265–1272 | Cite as

Immunosuppressive effect of silibinin in experimental autoimmune encephalomyelitis

  • Kyungwon Min
  • Won-Kee Yoon
  • Sang Kyum Kim
  • Bong-Hee Kim


Silibinin is the major pharmacologically active compound of silymarin, theSilybum marianum fruit extract. Hepatoprotective activities of silibinin/silymarin are well-known, and recent studies demonstrated their anti-inflammatory and anti-carcinogenic effects which are due to inhibition of the transcription factor NF-kB. Based on this knowledge, we hypothesized that silibinin could be effective in the treatment of multiple sclerosis (MS) and so we tested its immunosuppressive effect in experimental autoimmune encephalomyelitis (EAE), the MS animal model. The process of spinal cord demyelination and inflammation were observed and T cell migration was determined by FACS analysis. The results showed that silibinin significantly reduced the histological signs of demyelination and inflammation in EAE. Since cytokines play an important role in inflammatory disease, the proliferative response and cytokine production were examined in lymphocytes from spleens and lymph nodes. We demonstrated that silibinin Ag-nonspecifically down-regulated the secretion of pro-inflammatory Th1 cytokines and up-regulated the anti-inflammatory Th2 cytokinesin vitro. Silibinin also dose-dependently inhibited the production of Th1 cytokines exvivo. These results indicate that silibinin is both immunosuppressive and immunomodulatory.


EAE Multiple sclerosis Silibinin, Cytokines T helper cells Inflammation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aktas, O., Prozorovski, T., Smorodchenko, A., Savaskan, N., Lauster, R., Kloetzel, P., Infante-Duarte, C, Brocke, S., and Zipp, F., Green tea epigallocatechin-3-gallate mediates T cellular NF-kB inhibition and exerts neuroprotection in autoimmune encephalomyelitis.J. Immunol., 173, 5794- 5800 (2004).PubMedGoogle Scholar
  2. Bitsch, A., Schuchardt, J., Bunkowski, S., Kuhlmann, T., and Bruck, W., Acute axonal injury in multiple sclerosis.Brain, 123,1174–1183(2000).PubMedCrossRefGoogle Scholar
  3. Cudrici, C, Niculescu, T., Niculescu, F., Shin, M. L., and Rus, H., Oligodendrocyte cell death in pathogenesis of multiple sclerosis: Protection of oligodendrocytes from apoptosis by complement.J. Rehab. Res. Devel., 43, 123–132 (2006).CrossRefGoogle Scholar
  4. Deep, G., Singh R. P., Agarwal, C, Kroll, D. J., and Agarwal, R., Silymarin and silibinin cause G1 and G2-M cell cycle arrest via distinct circuitries in human prostate cancer PC3 cells: a comparison of flavanone silibinin with flavanolignan mixture silymarin.Oncogene, 25, 1053–1069(2006).PubMedCrossRefGoogle Scholar
  5. El Behi, M., Dubucquoi, S., Lefranc, D., Zephir, H., De Seze, J., Vermersch, P., and Prin, L., New insights into cell responses involved in experimental autoimmune encephalomyelitis and multiple sclerosis.Immunol. Lett., 96, 11–26 (2005).PubMedCrossRefGoogle Scholar
  6. Fazilleau, N., Delarasse, C., Sweenie, C., Anderton, S., Fillatreau, S., Lemonnier, F., Pham-Dinh, D., and Kanellopoulos, J., Persistence of autoreactive myelin oligodendrocyte glycoprotein (MOG)-specific T cell repertoires in MOG-expressing mice.Eur. J. Immunol., 36, 533–543 (2006).PubMedCrossRefGoogle Scholar
  7. Ford, M. and Evavold, B., Modulation of MOG 37-50-specific CD8+ T cell activation and expansion by CD43.Cell. Immunol., 240, 53–61 (2006).PubMedCrossRefGoogle Scholar
  8. Friese, M. and Fugger, L., Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy?Brain, 128, 1747–1763 (2005).PubMedCrossRefGoogle Scholar
  9. Gay, F., Drye, T., Dick, G, and Esiri, M., The application of multifactorial cluster analysis in the staging of plaques in early multiple sclerosis.Brain, 120, 1461–1483 (1997).PubMedCrossRefGoogle Scholar
  10. Goverman, J., Perchellet, A., and Huseby, E., The role of CD8+ T cells in multiple sclerosis and its animal models. Curr. Drug Targets Inflamm.Allergy, 4, 239–245 (2005).Google Scholar
  11. Hendrikes, J., Alblas, J., van der Pol, S., van Tol, E., Dijkstra, C, and de Vries, H., Flavonoids influence monocytic GTPase activity and Are protective in experimental allergic encephalitis.J. Exp. Med., 200, 1667–1672 (2004).CrossRefGoogle Scholar
  12. Imitola, J., Chitnis, T, and Khoury, S., Cytokines in multiple sclerosis: from bench to bedside.Pharmacol. Therap., 106, 163–177(2005).CrossRefGoogle Scholar
  13. Jacobs, B., Dennehy, C, Ramirez, G, Sapp, J., and Lawrence, V, Milk thistle for the treatment of liver disease: a systematic review and meta-analysis.Am. J. Med., 113, 506–515 (2002).PubMedCrossRefGoogle Scholar
  14. Johnson, V, He, Q., Osuchowski, M., and Sharma, R., Physiological responses of a natural antioxidant flavonoid mixture, silymarin, in BALB/c mice.Planta Med., 69,44–49 (2003).PubMedCrossRefGoogle Scholar
  15. Kang, J. S., Jeon, Y J., Park, S. K., Yang, K. H., and Kim, H. M., Protection against lipopolysaccharide-induced sepsis and inhibition of interleukin-1â and prostaglandin E2 synthesis by silymarin.Biochem. Pharmacol., 67, 175–181 (2003).CrossRefGoogle Scholar
  16. Kerlero de Rosbo,andBen-Nun, A., T-cell responses to myelin antigens in multiple sclerosis; relevance of the predominant autoimmune reactivity to myelin oligodendrocyte glycoprotein.J. Autoimmun., 11, 287–299 (1998).PubMedCrossRefGoogle Scholar
  17. Khalil, M., Reindl, M., Lutterotti, A., Kuenz, B., Ehling, R., Gneiss, C, Lackner, P., Deisenhammer, F., and Berger, T., Epitope specificity of serum antibodies directed against the extracellular domain of myelin oligodendrocyte glycoprotein: Influence of relapses and immunomodulatory treatments.J. Neuroimmunol., 174, 147–56(2005).CrossRefGoogle Scholar
  18. Komiyama, Y, Nakae, S., Matsuki, T, Nambu, A., Ishigame, H., Kakuta, S., Sudo, K., and Iwakura, Y, IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis.J. Immunol., 177, 566–573 (2006).PubMedGoogle Scholar
  19. Kren, V. and Walterova, D., Silybin and silymarin - new effects and applications.Biomed. Papers, 149(1), 29–41 (2005).Google Scholar
  20. Kuhlmann, T., Lingfeld, G, Bitsch, A., Schuchardt, J., and Bruck, W., Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time.Brain, 125, 2202–2212 (2002).PubMedCrossRefGoogle Scholar
  21. Lee, J., Kim, S., Kim, H., Lee, T., Jeong, Y, Lee, C, Yoon, M., Na, Y, Suh, D., Park, N., Choi, I., Kim, G, Choi, Y, Chung, H., and Park, Y, Silibinin polarized Th1/Th2 immune responses through the inhibition of immunostimulatory function of dendritic cells.J. Cell. Physiol., (2006).Google Scholar
  22. Mandel, M., Gurevich, M., Lavie, G, Cohen, I., and Achiron, A., Unique gene expression patterns in human T-cell lines generated from multiple sclerosis patients by stimulation with a synthetic MOG peptide.Clin. Devel. Immunol., 12(3), 203- 209 (2005).CrossRefGoogle Scholar
  23. Muthian, G and Bright, J., Quercetin, a flavonoid phytoestrogen, ameliorates experimental allergic encephalomyelitis by blocking IL-12 signaling through JAK-STAT pathway in T lymphocyte.J. Clin. Immunol., 24, 542–552 (2004).PubMedCrossRefGoogle Scholar
  24. Owens, T, The enigma of multiple sclerosis: inflammation and neurodegeneration cause heterogenous dysfunction and damage.Curr. Opin. Neurol., 16, 259–265 (2003).PubMedCrossRefGoogle Scholar
  25. Schumann, J., Prockl, J., Kiemer, A., Vollmar, A., Bang, R., and Tiegs, G, Silibinin protects mice from T cell-dependent liver injury.J. Hepatol., 39, 333–340 (2003).PubMedCrossRefGoogle Scholar
  26. Stuve, O., Youssef, S., Weber, M., Nessler, S., von Budinger, H., Hemmer, B., Prod’homme, T., Sobel, R., Steinman, L., and Zamvil, S., Immunomodulatory synergy by combination of atorvastatin and glatiramer acetate in treatment of CNS autoimmunity.J. Clin. Invest, 116(4), 1037–1044 (2006).PubMedCrossRefGoogle Scholar
  27. Sun, D., Newman, T., Perry, V., and Weiler, R., Cytokine-induced enhancement of autoimmune inflammation in the brain and spinal cord: implications for multiple sclerosis.Neuropathol. Appl. Neurobiol., 30, 374–384 (2004).PubMedCrossRefGoogle Scholar
  28. Thelen, P., Jarry, H., Ringert, R., and Wuttke, W., Silibinin down- reglates prostate epithelium-derived Ets transcription factor in LNCaP prostate cancer cells.Planta Med., 70, 397–400 (2004).PubMedCrossRefGoogle Scholar
  29. Van den Broek, H., Damoiseaux, J., de Baets, M., and Hupperts, R., The influence of sex hormones on cytokines in multiple sclerosis and experimental autoimmune encephalomyelitis: a review.Mult. Scler., 11, 349–359 (2005).PubMedCrossRefGoogle Scholar
  30. Zhang, G X., Yu, S., Gran, B., and Rostami, A., Glucosamine abrogates the acute phase of experimental autoimmune encephalomyelitis by induction of Th2 response.J. Immunol., 175,7202–7208(2005).PubMedGoogle Scholar
  31. Zhao, J. and Agarwal, R., Tissue distribution of silibinin, the major active constituent of silymarin, in mice and its association with enhancement of phase II enzymes: implications in cancer chemoprevention.Carcinogenesis, 20(11), 2101–2108(1999).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2007

Authors and Affiliations

  • Kyungwon Min
    • 1
    • 2
  • Won-Kee Yoon
    • 1
  • Sang Kyum Kim
    • 2
  • Bong-Hee Kim
    • 1
  1. 1.Korea Research Institute of Bioscience and BiotechnologyDaejeonKorea
  2. 2.College of Pharmacy and RCTCPChungnam National UniversityDaejeonKorea

Personalised recommendations