Archives of Pharmacal Research

, 30:1168 | Cite as

Transport of a new erectogenic udenafil in caco-2 cells

  • Hye Young Ji
  • Hyun Joo Shim
  • Moohi Yoo
  • Eun-Seok Park
  • Hye Suk Lee
Article Drug development


P-glycoprotein, an ATP-dependent efflux pump, is a membrane transporter that influences the absorption and excretion of drugs. There is a striking overlap between the substrates for CYP3A4 and P-glycoprotein. This study was designed to assess whether udenafil, a substrate of CYP3A4, is also a P-glycoprotein substrate. Udenafil stimulated P-glycoprotein ATPase activity, a putative measure of P-glycoprotein affinity, although with lower affinity than a proven substrate, verapamil. Bidirectional transport studies of udenafil using Caco-2 cell monolayers showed that its efflux (15.9-22.8 x 106 cm/s) was significantly higher than its influx (3.7-9.1 × 106 m/s). P-glycoprotein inhibitors such as cyclosporine, tariquidar and verapamil significantly increased the influx of udenafil and decreased the efflux of udenafil. These results indicate that udenafil is a substrate for P-glycoprotein. The low bioavailability, variable absorption and drug-drug interactions of udenafil may be related to the variability of CYP3A4 and P-glycoprotein expression and to possible CYP3A4 and P-glycoprotein interactions.

Key words

Udenafil P-glycoprotein Caco-2 Transport 


  1. Ambudkar, S. V., Dey, S., Hrycyna, C. A., Ramachandra, M., Pastan, I., and Gottesman, M. M., Biochemical, cellular and pharmacological aspects of the multidrug transporter.Ann. Rev. Pharmacol. Toxicol., 39, 361–398 (1999).CrossRefGoogle Scholar
  2. Ahn, B. O., Kang, K. K., Ahn, G. J., Kwon, J. W., Kim, W. B., Kang, K. S., and Lee, Y. S., Efficacy of DA-8159, a new PDE5 inhibitor, for inducing penile erection in rabbits with acute spinal cord injury.Int. J. Impot. Res., 15, 405–411 (2003).PubMedCrossRefGoogle Scholar
  3. Benet, L. Z. and Cummins, C. L., The drug efflux-metabolism alliance: biochemical aspects.Adv. Drug Del. Rev., 50, S3-S11 (2001).CrossRefGoogle Scholar
  4. Choi, S. J., Ji, H. Y., Lee, H. Y., Kim, D. S., Kim, W. B., and Lee, H. S., In vitro metabolism of a novel phosphodiesterase-5 inhibitor DA-8159 in rat liver preparations using liquid chromatography/electrospray mass spectrometry.Biomed. Chromatogr., 16, 395–399 (2002).PubMedCrossRefGoogle Scholar
  5. Drueckes, P., Schinzel, R., and Palm, D., Photometric microtiter assay of inorganic phosphate in the presence of acid-labile organic phosphates.Anal. Biochem., 230, 173–177 (1995).PubMedCrossRefGoogle Scholar
  6. Gan, L. L., Moseley, M. A., Khosla, B., Augustijns, P. F., Bradshaw, T. P., Hendren, R. W., and Thakker, D. R., CYP3A-like cytochrome P450-mediated metabolism and polarized efflux of cyclosporin A in Caco-2 cells: Interaction between the two biochemical barriers to intestinal transport.Drug Metab. Dispos., 24, 344–349 (1996).PubMedGoogle Scholar
  7. Gres, M. C., Julian, B., Bourne, M., Meunier, V., Roques, C., Berger, M., Boulenc, X., Berger, Y., and Fabre, G., Correlation between oral drug absorption in humans, and apparent drug permeability in TC-7 cells, a human epithelial intestinal cell line: comparison with the parental Caco-2 cell line.Pharm. Res., 15, 726–733 (1998).PubMedCrossRefGoogle Scholar
  8. Hidalgo, I. J., Assessing the absorption of new Pharmaceuticals.Current Topics Med. Chem., 1, 385–401 (2001).CrossRefGoogle Scholar
  9. Hoffmeyer, S., Burk, O., Von Richter, O., Arnold, H. P., Brockmoller, J., Johne, A., Cascorli, I., Gerloff, T., Roots, I., Eichelbaume, M., and Brinkmann, U., Functional polymorphism of the human multidrug-resistant gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activityin vivo.Proc. Natl. Acad. Sci., 97, 4373–4378 (2000).CrossRefGoogle Scholar
  10. Hunter, J., Hirst, B. H., and Simmons, N. L., Drug absorption limited by P-glycoprotein-mediated secretory drug transport in human intestinal epithelial Caco-2 cell layers.Pharm. Res., 10, 743–749 (1993).PubMedCrossRefGoogle Scholar
  11. Ji, H. Y., Lee, H. W., Kim, H. H., Kim, D. S., Yoo, M., Kim, W. B., and Lee, H. S., Role of human Cytochrome P450 3A4 in the metabolism of DA-8159, a new erectogenic.Xenobiotica, 34, 973–982 (2004).PubMedCrossRefGoogle Scholar
  12. Kang, K. K., Yu, J. Y., Yoo, M., and Kwon, J. W., The effect of DA-8159, a novel PDE5 inhibitor, on erectile function in the rat model of hypercholesterolemic erectile dysfunction.Int. J. Impot. Res., 17, 409–416 (2005).PubMedCrossRefGoogle Scholar
  13. Kim, J., Kim, S. J., Ji, H. Y., Jin, J. K., Lee, S. S., Kim, D. S., Yoo, M., Kim, W. B., and Lee, H. S., Simultaneous determination of a new phosphodiesterase-5 inhibitor DA-8159 and its active metabolite in human plasma by high performance liquid chromatography with tandem mass spectrometry.Chromatographia, 57, 447–450 (2003).CrossRefGoogle Scholar
  14. Kim, H. H., Ji, H. Y., Lee, H. Y., Kim S. A., Lee, S., Yi, K. Y., and Lee, H. S., Characterization of cytochrome P450 enzymes and P-glycoprotein involved in the metabolism and transport of a new anti-angiogenic agent KR-31831.Drug Devel. Res., 66, 40–49 (2006).CrossRefGoogle Scholar
  15. Martin, C., Berridge, G., Mistry, P., Higgins, C., Charlton, P., and Callaghan, R., The molecular interaction of the affinity reversal agent XR9576 with P-glycoprotein.Br. J. Pharmacol., 128, 403–411 (1999).PubMedCrossRefGoogle Scholar
  16. Meunier, V., Bourne, M., Berger, Y., and Fabre, G., The human intestinal epithelial cell line Caco-2: pharmacological and pharmacokinetic applications.Cell. Biol. Toxicol., 11, 187–194 (1995).PubMedCrossRefGoogle Scholar
  17. Oh, T. Y., Kang, K. K., Ahn, B. O., Yoo, M., and Kim, W. B., Erectogenic effect of the selective phosphodiesterase type 5 inhibitor, DA-8159.Arch. Pharm. Res., 23, 471–476 (2000).PubMedCrossRefGoogle Scholar
  18. Sarkardi, B, Price, E. M., Boucher, R. C., Germann, U. A., and Scarborough, G. A., Expression of the human multidrug resistance cDNA in insect cells generates a high-activity drug-stimulated membrane ATPase.J. Biol. Chem., 267, 4854–4858 (1992).Google Scholar
  19. Schmiedlin-Ren, P., Thummel, K. E., Fisher, J. M., Paine, M. F., Lown, K. S., and Watkins, P. B., Expression of enzymatically active CYP3A4 by Caco-2 cells grown on extracellular matrix-coated permeable supports in the presence of 1 a,25- dihydroxyvitamin D3.Mol. Pharmacol., 51, 741–754 (1997).PubMedGoogle Scholar
  20. Shim, H. J., Kim, Y. C., Park, K. J., Kim, D. S., Kwon, J. W., Kim, W. B., and Lee, M. G., Pharmacokinetics of DA-8159, a new erectogenic, after intravenous and oral administration to rats: hepatic and intestinal first-pass effects.J. Pharm. Sci., 28, 2185–2195 (2003).CrossRefGoogle Scholar
  21. Silverman, J. A., P-Glycoprotein. In: Levi, R. H., Thummel, K. E., Trager, W. F., Hansten, P. D., Eichelbaum, M., editors. Metabolic Drug Interactions. Philadelpia, Lippincott Williams & Wilkins. p 135–144 (2000).Google Scholar
  22. Wacher, V. J., Wu, C. Y., and Benet, L. Z., Overlapping substrate specificities and tissue distribution of cytochrme P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy.Mol. Carcinog., 13, 129–134 (1995).PubMedCrossRefGoogle Scholar
  23. Wacher, V. J., Salphati, L., and Benet, L. Z., Active secretion and enterocytic drug metabolism barriers to drug absorption.Adv. Drug Deliv. Rev., 46, 89–102 (2001).PubMedCrossRefGoogle Scholar
  24. Walle, U. K. and Walle, T., Taxol transport by human intestinal epithelial Caco-2 cells.Drug Metab. Dispos., 26, 343–346 (1998).PubMedGoogle Scholar
  25. Williams, W. C. and Sinko, P. J., Oral absorption of the HIV protease inhibitors: a current update.Adv. Drug Deliv. Rev., 39, 211–238 (1999).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2007

Authors and Affiliations

  • Hye Young Ji
    • 3
  • Hyun Joo Shim
    • 1
  • Moohi Yoo
    • 1
  • Eun-Seok Park
    • 2
  • Hye Suk Lee
    • 1
  1. 1.Research LaboratoriesDong-A Pharmaceutical Co., Ltd.YonginKorea
  2. 2.College of PharmacySungkyunkwan UniversitySuwonKorea
  3. 3.Drug Metabolism and Bioanalysis Laboratory, College of PharmacyWonkwang UniversityIksanKorea

Personalised recommendations