Advertisement

Archives of Pharmacal Research

, Volume 27, Issue 7, pp 797–805 | Cite as

Optimizing the novel formulation of liposome-polycation-dna complexes (lpd) by central composite design

  • Xun Sun
  • Zhirong Zhang
Research Articles Articles

Abstract

LPD vectors are non-viral vehicles for gene delivery comprised of polycation-condensed plasmid DNA and liposomes. Here, we described a novel anionic LPD formulation containing protamine-DNA complexes and pH sensitive liposomes composed of DOPE and cholesteryl hemisuccinate (Chems). Central composite design (CCD) was employed to optimize stable LPD formulation with small particle size. A three factor, five-level CCD design was used for the optimization procedure, with the weight ratio of protamine/DNA (X1), the weight ratio of Chems/ DNA (X2) and the molar ratio of Chems/DOPE in the anionic liposomes (X3) as the independent variables. LPD size (Y1) and LPD protection efficiency against nuclease (Y2) were response variables. Zeta potential determination was utilized to define the experimental design region. Based on experimental design, responses for the 15 formulations were obtained. Mathematical equations and response surface plots were used to relate the dependent and independent variables. The mathematical model predicted optimized X1-X3 levels that achieve the desired particle size and the protection efficiency against nuclease. According to these levels, an optimized LPD formulation was prepared, resulting in a particle size of 185.3 nm and protection efficiency of 80.22%.

Key words

Liposome-Polycation-DNA complexes (LPD) Central composite design (CCD) Formulation optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arangoa, M. A., Dzgnes, N., and llarduya, C. T., Increased receptor-mediated gene delivery to the liver by protamine-enhanced-asialofetuin-lipoplexes.Gene Therapy, 10, 5–14 (2003).PubMedCrossRefGoogle Scholar
  2. Audouy, S. A. L., Lou, F. M. H., Leij, H., and Molema, G.,In vivo characteristics of cationic liposomes as delivery vectors for gene therapy.Pharm. Res., 19, 1599–1605 (2002).PubMedCrossRefGoogle Scholar
  3. Cherng, J. Y., Schuurmans-Nieuwenbroek, N. M., Jiskoot, W., Talsma, H., Zuidam, N. J., Hennink, W. E., and Crommelin, D. J., Effect of DNA topology on the transfection efficiency of poly((2-dimethylamino)ethyl methacrylate)-plasmid complexes.J. Control Release, 60, 343–353 (1999).PubMedCrossRefGoogle Scholar
  4. Corsi, K., Chellat, F., Hocine, Y. L., and Fernandes, J. C., Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles.Bbmaterials, 24, 1255–1264 (2003).CrossRefGoogle Scholar
  5. Guo, W. and Lee, R. J., Efficient gene delivery using anionic liposome-complexed polyplexes (LPD).Bioscience Reports, 20, 419–432 (2000).PubMedCrossRefGoogle Scholar
  6. Guo, W., Gosselin, M. A., and Lee, R. J., Characterization of novel diolein-based LPD vector for gene delivery.J. Control. Release, 83, 121–132 (2002).PubMedCrossRefGoogle Scholar
  7. Jeannette, T. T., Kevin, J. F., Michnick, T., Sloane, D. L., and Paul, R. W., Quantitative physical characterization of lipidpolycation-DNA lipopolyplexes.Biotechnol. Appl. Biochem., 36, 13–20 (2002).CrossRefGoogle Scholar
  8. Kabanov, A. V. and Kabanov, V. A., DNA complexes with polycations for the delivery of genetic material into cells.Bioconjug. Chem., 6, 7–20 (1995).PubMedCrossRefGoogle Scholar
  9. Kim, Y. J., Kim, T. W., Chung, H., Kwon, I. C., Sung, H. C., and Jeong, S. Y., The effects of serum on the stability and the transfection activity of the cationic lipid emulsion various oils.Inter. J. Pharm., 252, 241–252 (2003).CrossRefGoogle Scholar
  10. Koppelhus, U. and Nielsen, P. E., Cellular delivery of peptide nucleic acid (PNA).Adv. Drug Deliv. Rev., 55, 267–280 (2003).PubMedCrossRefGoogle Scholar
  11. Kreiss, P., Cameron, B., Rangara, R., Mailhe, P., Aguerre-Charriol, O., Airiau, M., Scherman, D., Crouzet, J., and Pitard, B., Plasmid DNA size does not affect the physicochemical properties of lipoplexes but modulates gene transfer efficiency.Nucleic Acids Res., 27, 3792–3798 (1999).PubMedCrossRefGoogle Scholar
  12. Lee, R. J. and Huang, L., Folate-targeted, anionic liposomeentrapped polylysine-condensed DNA for tumor cell-specific gene transfer.J. Biol. Chem., 271, 8481–8487 (1996).PubMedCrossRefGoogle Scholar
  13. Liu, G., Molas, M., Grossmann, G. A., Pasumarthy, M., Perales, J. C., Cooper, M. J., and Hanson, R. W., Biological Properties of Poly-L-lysine-DNA complexes generated by cooperative binding of the polycation.J. Biol. Chem., 276, 34379–34387 (2001).PubMedCrossRefGoogle Scholar
  14. Mastrobattista, E., Kapel, R. H. G., Eggenhuisen, M. H., Roholl, P. J. M., Crommelin, D. J. A., Hennink, W. E., and Storm, G., Lipid-coated polyplexes for targeted gene delivery to ovarian carcinoma cells.Cancer Gene Therapy, 8, 405–413 (2001).PubMedCrossRefGoogle Scholar
  15. Moret, I., Peris, J. E., Guillem, V. M., Benet, M., Revert, F., Das, F., Crespo, A., and Alio, S. F., Stability of PEI-DNA and DOTAP-DNA complexes: effect of alkaline PH, heparin and serum.J. Contrl. Release, 76, 169–181 (2001).CrossRefGoogle Scholar
  16. Stuart, D. D. and Allen, T. M., A new liposomal formulation for antisense oligodeoxynucleotides with small size, high incorporation efficiency and good stability.Biochimica et Biophysica Acta, 1463, 219–229 (2000).PubMedCrossRefGoogle Scholar
  17. Trubetskoy, V. S., Loomis, A., Hagstrom, J. E., Budker, V. G., and Wolff, J. A., Layer-by-layer deposition of oppositely charged polyelectrolytes on the surface of condensed DNA particles.Nucleic Acids Res., 27, 3090–3095 (1999).PubMedCrossRefGoogle Scholar
  18. Ueno, N. T., Bartholomeusz, C., Xia, W., Anklesaria, P., Bruckheimer, E. M., Mebel, E., Paul, R., Li, S., Yo, G. H., Huang, L., and Hung, M. C., Systemic gene therapy in human xenograft tumor models by liposomal delivery of theBIR gene.Cancer Res., 62, 6712–6716 (2002).PubMedGoogle Scholar
  19. Vinogradov, S. V., Bronich T. K., and Kabanov, A. V., Nanosized cationic hydrogels for drug delivery: preparation.properties and interaction with cells.Adv. Drug Deliv. Rev., 54, 135–147 (2002).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2004

Authors and Affiliations

  1. 1.West China School of PharmcySichuan UniversityChengduChina

Personalised recommendations