Advertisement

Framework for modelling data uncertainty in life cycle inventories

  • Mark A. J. Huijbregts
  • Gregory Norris
  • Rolf Bretz
  • Andreas Ciroth
  • Benoit Maurice
  • Bo von Bahr
  • Bo Weidema
  • Angeline S. H. de Beaufort
SETAC-Europe LCA Working Group ‘Data Availability and Data Quality’

Abstract

Modelling data uncertainty is not common practice in life cycle inventories (LCI), although different techniques are available for estimating and expressing uncertainties, and for propagating the uncertainties to the final model results. To clarify and stimulate the use of data uncertainty assessments in common LCI practice, the SETAC working group ‘Data Availability and Quality’ presents a framework for data uncertainty assessment in LCI. Data uncertainty is divided in two categories: (1) lack of data, further specified as complete lack of data (data gaps) and a lack of representative data, and (2) data inaccuracy. Filling data gaps can be done by input-output modelling, using information for similar products or the main ingredients of a product, and applying the law of mass conservation. Lack of temporal, geographical and further technological correlation between the data used and needed may be accounted for by applying uncertainty factors to the non-representative data. Stochastic modelling, which can be performed by Monte Carlo simulation, is a promising technique to deal with data inaccuracy in LCIs.

Key words

Data gaps data inaccuracy data uncertainty unrepresentative data general framework life cycle inventory (LCI) Monte Carlo simulation sensitivity analysis SETAC LCA-WG Data Availability Data Quality uncertainty assessment uncertainty importance 

References

  1. Beccali G, Beccali M, Cellura M (1997): Fuzzy set application in life cycle inventory of building materials. Paper. Building and the Environment: Proceedings of the Second International Conference. Volume 1: Assessment methods and natural resources. Centre Scientifique et Technique du Bâtiment, ParisGoogle Scholar
  2. Boustead I (1993): Eco-profiles of the European plastics industry. Report 3: polyethylene and polypropylene. Association of Plastics Manufacturers in Europe (APME), European Centre for Plastics and the Environment (PMWI), BrusselsGoogle Scholar
  3. Boustead I (1997): Eco-profiles of the European plastics industry. Report 9: polyurethane precursors (TDI, MDI, Polyols). Second edition. Association of Plastics Manufacturers in Europe (APME), European Isocyanate Producers Association (ISOPA). BrusselsGoogle Scholar
  4. Bretz R, Fankhauser P (1996): Screening LCA for large numbers of products: estimation tools to fill data gaps. Int J LCA 1 (3) 139–146Google Scholar
  5. Burmaster DE, Anderson PD (1994): Principles of good practice for the use of Monte Carlo techniques in human health and ecological risk assessments. Risk Analysis 14 (4) 477–481CrossRefGoogle Scholar
  6. Carnegie Mellon University (1999): Economic input-output life cycle assessment. http://www.eiolca.net/Google Scholar
  7. Chevalier JL, Le Téno JF (1996). Life cycle analysis with ill-defined data and its application to building products. Int J LCA 1 (2) 90–96Google Scholar
  8. De Beaufort ASH, Bretz R (eds.) (2001): Code of life cycle inventory practice. SETAC WG ‘Data Availability and Data Quality’. SETAC-Europe, Brussels (forthcoming)Google Scholar
  9. EC (1996): Technical Guidance on in support of Commission Directive 93/67/EEC on risk assessment for new notified substances and Commission Regulation (EC) No. 1488/94 on risk assessment for existing substances 2nd part. Brussels, Commission of the European Communities, Directorate-General Environment, Nuclear Safety and Civil ProtectionGoogle Scholar
  10. Fava J, Jensen AA, Lindfors L, Pomper S, De Smet B, Warren J, Vigon B (1994): Life-cycle assessment data quality: a conceptual framework. Society of Environmental Toxicology and Chemistry-Europe. Pensacola, FloridaGoogle Scholar
  11. Finnveden G, Lindfors LG (1998): Data quality of life cycle inventory data-rules of thumb. Int J LCA 3 (2) 65–66Google Scholar
  12. Frischknecht R, Hofstetter P, Knoepfel I, Menard M, Dones R, Zollinger E (eds.) (1996): Ökoinventare für Energiesystemen. Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz. Eidgenössische Technische Hochschule, ZürichGoogle Scholar
  13. Habersatter K (ed.) (1991): Ökobilanz von Packstoffen, Stand 1990, Swiss Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Schriftenreihe Umwelt Nr. 132. BernGoogle Scholar
  14. Habersatter K, Fecker I (eds.) (1998): Ökoinventare für Verpackungen Vol. I + II, Swiss Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Schriftenreihe Umwelt Nr. 250/I+II, Update and corrections. BernGoogle Scholar
  15. Heijungs R (1996): Identification of key issues for further investigation in improving the reliability of life cycle assessments. J Cleaner Prod 4 (3–4) 159–166CrossRefGoogle Scholar
  16. Hendrickson C, Horvath A, Joshi S, Lave L (1998): Economic input-output models for environmental life-cycle assessment. Environ Sci Tech 32 (7) 184A-191AGoogle Scholar
  17. Hischier R, Bretz R, Baitz M, McKeown P, Oele M, Renner I, Reusser L, Wessman H, Huybrechts D, Moessner S, De Beaufort ASH (2001): SETAC-Europe LCA Working Group, Data Availability and Data Quality, ‘Standardized Lists of Interventions’. Int J LCA (forthcoming)Google Scholar
  18. Hoffman L, Weidema BP, Kristiansen K, Ersball AK (1995): Statistical analysis and uncertainties in relation to LCA. Special reports no. 1. Nordic Council of Ministers. CopenhagenGoogle Scholar
  19. Huijbregts MAJ (1998a): Application of uncertainty and variability in LCA. Part I: A general framework for the analysis of uncertainty and variability in life-cycle assessment. Int J LCA 3 (5) 273–280Google Scholar
  20. Huijbregts MAJ (1998b): Application of uncertainty and variability in LCA. Part II: Dealing with parameter uncertainty and uncertainty due to choices in life-cycle assessment. Int J LCA 3 (6) 343–351Google Scholar
  21. Janssen PHM, Slob W, Rotmans J (1990): Gevoeligheidsanalyse en onzekerheidsanalyse, een inventarisatie van ideeën, methoden en technieken (in Dutch). Report no. 958805001. National Institute of Public Health and the Environment, BilthovenGoogle Scholar
  22. Kennedy DJ, Montgomery DC, Quay BH (1996): Data quality. Stochastic environmental life cycle assessment modelling. A probabilistic approach to incorporating variable input data quality. Int J LCA 1 (4) 199–207CrossRefGoogle Scholar
  23. Maurice B, Frischknecht R, Coehlo-Schwirtz V, Hungerbühler K (2000): Uncertainty analysis in life cycle inventory. Application to the production of electricity with French coal power plants. J Cleaner Prod 8 (2) 95–108CrossRefGoogle Scholar
  24. Morgan MG, Henrion M, Morris SC Amaral DAL (1985): Uncertainty in risk assessment. A case study involving sulfur transport and health effects. Environ Sci Tech 19 (8) 662–667CrossRefGoogle Scholar
  25. Morgan MG, Henrion M (1990): A guide to dealing with uncertainty in quantitative risk and policy analysis. Cambridge University Press, New York, NYGoogle Scholar
  26. Norris GA (1997): An Integrated Economic/Environmental Accounting Analysis System for the USA. In: Regional and National Material Flow Accounting: From Paradigm to Practice of Sustainability. Wuppertal Institute for Climate, Environment, and Energy, GermanyGoogle Scholar
  27. Petersen EH (1997): Life-cycle assessment of building components. Handling uncertainties in LCAs. Paper. Building and the Environment: Proceedings of the Second International Conference. Volume 1: Assessment methods and natural resources. Centre Scientifique et Technique du Batiment, ParisGoogle Scholar
  28. Ragas AMJ, Etienne RS, Willemsen FH, Van de Meent D (1999): Assessing model uncertainty for environmental decision making: a case study of the coherence of independently derived environmental quality objectives for air and water. Environ Toxicol Chem 18, 1856–1867Google Scholar
  29. Singhofen A, Hemming CR, Weidema BP, Grisel L, Bretz R, De Smet B, Russell D (1996): Life cycle inventory data: development of a common format. Int J LCA 1 (3) 171–178Google Scholar
  30. Suh S (2000): Missing inventory estimation tool (MIET 1.2). http:// www.leidenuniv.nl/cml/ssp/software/Google Scholar
  31. Taylor AC (1993): Using objective and subjective information to develop distributions for probabilistic exposure assessment. J Expos Anal Environ Epidem 3 (3) 285–298Google Scholar
  32. Vose D (1996): Quantitative risk analysis. A guide to Monte Carlo simulation modelling. John Wiley & Sons, West SussexGoogle Scholar
  33. Weidema BP (1998): Multi-user test of the data quality matrix for product life cycle inventory data. Int J LCA 3 (5) 259–265Google Scholar
  34. Weidema B P. (1999). The SPOLD file format ‘99. http://www.spold.org/publ/Google Scholar
  35. Weidema BP, Wesnæs MS (1996): Data quality management for life cycle inventories: an example of using data quality indicators. J Cleaner Prod 4 (3–4) 167–174CrossRefGoogle Scholar

Copyright information

© Ecomed Publishers 2001

Authors and Affiliations

  • Mark A. J. Huijbregts
    • 1
    • 2
  • Gregory Norris
    • 3
  • Rolf Bretz
    • 4
  • Andreas Ciroth
    • 5
  • Benoit Maurice
    • 6
  • Bo von Bahr
    • 7
  • Bo Weidema
    • 8
  • Angeline S. H. de Beaufort
    • 9
  1. 1.Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamThe Netherlands
  2. 2.Department of Environmental SciencesNijmegen UniversityThe Netherlands
  3. 3.SylvaticaUSA
  4. 4.Ciba Specialty Chemicals IncBaselSwitzerland
  5. 5.Institut fuer Technischen Umweltschutz, Abfallvermeidung und Sekundaerrohstoff-wirtschaftTechnical University BerlinBerlinGermany
  6. 6.Electricité De France, Research and Development DivisionEnergy Systems Branch, Site des RenardièresMoret sur LoingFrance
  7. 7.CPM - Centre for Environmental Assessment of Product and Material Systems Chalmers University of TechnologyGöteborgSweden
  8. 8.2.-0 LCA consultantsCopenhagenDenmark
  9. 9.FEFCO-G0-KISwalmenThe Netherlands

Personalised recommendations