Advertisement

Assessing future energy and transport systems: the case of fuel cells

Part 2: environmental performance
  • Martin Pehnt
LCA Case Studies

Abstract

Goal, Scope and Background

Assessing future energy and transport systems is of major importance for providing timely information for decision makers. In the discussion of technology options, fuel cells are often portrayed as attractive options for power plants and automotive applications. However, when analysing these systems, the LCA analyst is confronted with methodological problems, particularly with data gaps and the requirement of forecasting and anticipation of future developments. This series of two papers aims at providing a methodological framework for assessing future energy and transport systems (Part 1) and applies this to the two major application areas of fuel cells (Part 2).

Methods

To allow the LCA of future energy and transport systems, forecasting tools like, amongst others, cost estimation methods and process simulation of systems are investigated with respect to the applicability in LCAs of future systems (Part 1). The manufacturing process of an SOFC stack is used as an illustration for the forecasting procedure. In Part 2, detailed LCAs of fuel cell power plants and power trains are carried out including fuel (hydrogen, methanol, gasoline, diesel and natural gas) and energy converter production. To compare it with competing technologies, internal combustion engines (automotive applications) and reciprocating engines, gas turbines and combined cycle plants (stationary applications) are also analysed.

Results and Discussion

Principally, the investigated forecasting methods are suitable for future energy system assessment. The selection of the best method depends on different factors such as required ressources, quality of the results and flexibility. In particular, the time horizon of the investigation determines which forecasting tool may be applied. Environmentally relevant process steps exhibiting a significant time dependency shall always be investigated using different independent forecasting tools to ensure stability of the results.

The results of the LCA underline that, in general, fuel cells offer advantages in the impact categories usually dominated by pol-lutant emissions, such as acidification and eutrophication, whereas for global warming and primary energy demand, the situation depends on a set of parameters such as driving cycle and fuel economy ratio in mobile applications and thermal/total efficiencies in stationary applications. For the latter impact categories, the choice of the primary energy carrier for fuel production (renewable or fossil) dominates the impact reduction. With increasing efficiency and improving emission performance of the conventional systems, the competition in both mobile and stationary applications is getting even stronger. The production of the fuel cell system is of low overall significance in stationary applications, whereas in vehicles, the lower life-time of the vehicle leads to a much higher significance of the power train production.

Recommendations and Perspectives

In future, rapid technological and energy economic development will bring further advances for both fuel cells and conventional energy converters. Therefore, LCAs at such an early stage of the market development can only be considered preliminary. It is an essential requirement to accompany the ongoing research and development with iterative LCAs, constantly pointing at environmental hot spots and bottlenecks.

Keywords

Cogeneration combined cycle fuel cells gasification gas turbine hydrogen methanol Kværner CB & H process life cycle assessment (LCA) polymer electrolyte membrane fuel cell (PEFC or PEMFC) power train reciprocating engine solid oxide fuel cell (SOFC) steam reforming 

References

  1. Acurex (1996): Evaluation of Fuel-Cycle Emissions on a Reactivity Basis. Mountain View, Acurex Environmental CorporationGoogle Scholar
  2. Bach C, Kläntschi N, Heeb N, Jäckie HW, Mattrel P, Rytz C, Mohr M, Forss AM, Gujer E, Haag R, Rüegg E, Steinhauer E (1998): Wirkungsorientierte Bewertung von Automobilabgasen. Schluß-bericht. EMPA, DübendorfGoogle Scholar
  3. Borken J, Patyk A, Reinhardt GA (1999): Basisdaten für ökologische Bilanzierungen. Vieweg, Braunschweig, WiesbadenGoogle Scholar
  4. Carpetis C (2000): Globale Umweltvorteile bei Nutzung von Elektroantrieben (mit Brennstoffzellen und/oder Batterien) im Vergleich zu Antrieben mit Verbrennungsmotor. STB-Bericht Nr. 22, DLR-IB-200044417400. Deutsches Zentrum für Luft- und Raumfahrt, Institut für Technische Thermodynamik, StuttgartGoogle Scholar
  5. CML (1992): Heijungs R, Guinée JB, Huppes G, Lankreijer RM, Haes HAUd, Sleeswijk AW: Environmental Life Cycle Assessment of Products. Guide and Backgrounds. Center of Environmental Science, LeidenGoogle Scholar
  6. Dedikov JV, Akopova GS, Gladkaja NG, Piotrovskij AS, Markellov VA, Salichov SS, Kaesler H, Ramm A, Blumencron AM and Lelieveld J (1998): Estimating Methane Releases from Natural Gas Production and Transmission in Russia. Atmospheric Environment 33 3291–3299CrossRefGoogle Scholar
  7. ESU (1996): Ökoinventare von Energiesystemen. Grundlagen fürden ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen fürdie Schweiz. R. Frischknecht et al. ZürichGoogle Scholar
  8. GEMIS (2001): Gesamt-Emissions-Modell Integrierter Systeme Version 4.07. Öko-Institut e. V, Darmstadt, FreiburgGoogle Scholar
  9. Hasler P, Nussbaumer T, Bühler R (1993): Vergasung von Biomasse fürdie Methanol-Synthese. Paul Scherrer Institut, Bundesamt fürEnergiewirtschaft, Villigen, BernGoogle Scholar
  10. Hasler P, Nussbaumer T, Bühler R (1995): Vergasung von belastetenGoogle Scholar
  11. Brennstoffen zu Synthesegas. Bundesamt fürEnergiewirtschaft, Villigen, BernGoogle Scholar
  12. Heinisch M, Trumpf R (1998): Erfahrungen aus der Planung, der Inbetriebnahme und dem ersten Betriebsjahr des GuD-Kraft-werks der Gemeinschaftskraftwerk Tübingen GmbH. Gasturbinen in energietechnischen Anlagen, VDI-BerichteGoogle Scholar
  13. Hella KG (1999): Personal communication Mr Wienecke, Hella KG (26.1.1999)Google Scholar
  14. Hochfeld C (1997): Bilanzierung der Umweltauswirkungen bei der Gewinnung von Platingruppen-Metallen fürPKW-Abgaskatalysatoren. Technische Universität BerlinGoogle Scholar
  15. Höhlein B, Biedermann P, Klemp D, Geiß H (1996): Verkehrsemissionen und Sommersmog. Monographien des Forschungszentrums Jülich, JülichGoogle Scholar
  16. Ifeu (1999): Patyk A, Höpfner U: Ökologischer Vergleich von Kraft-fahrzeugen mit verschiedenen Antriebsenergien unter besonderer Berücksichtigung der Brennstoffzelle. Studie im Auftrag des Büros fürTechnikfolgenabschätzung beim Deutschen Bundestag. Institut für Energie- und Umweltforschung, HeidelbergGoogle Scholar
  17. IKARUS (1994): Strom- und wärmeerzeugende Anlagen auf fossiler und nuklearer Grundlage, Teilprojekt 4 ‘Umwandlungssektor’, JülichGoogle Scholar
  18. IPCC (1996): Intergovernmental Panel of Climate Change (ed.): Climate change 1995-The science of climate change. University Press, CambrigeGoogle Scholar
  19. Lurgi (1993): Lurgi Offertstudie für das Biometh-Projekt. Lurgi AG, FrankfurtGoogle Scholar
  20. Neubrandenburg (1999): Personal communication Mrs Manthe, Neubrandenburger Stadtwerke GmbH (10.3.1999)Google Scholar
  21. Pehnt M (2001a): Bedeutung alternativer Antriebe und Kraftstoffe für den Ressourcen- und Klimaschutz. Energiewirtschaftliche Tagesfragen 51 (12) 732–37Google Scholar
  22. Pehnt M (2001b): Life Cycle Assessment of Fuel Cell Stack Production. Int. J. Hydrogen Energy 26, 91–101CrossRefGoogle Scholar
  23. Pehnt M (2002a): Ganzheitliche Bilanzierung von Brennstoffzellen in der Energie- und Verkehrstechnik. VDI Verlag Fortschritt-Berichte Reihe 6 Nr. 476 ISBN 3-18-347606-1, DüsseldorfGoogle Scholar
  24. Pehnt M (2002b): Ökobilanzen von Brennstoffzellen-Antrieben in Pkw: ein Überblick. Short study for the Umweltbundesamt. Institut für Energie- und Umweltforschung, HeidelbergGoogle Scholar
  25. Pehnt M (2003a): Assessing Future Energy and Transport Systems: The Case of Fuel Cells. Part 1: Methodological Aspects. Int J LCA 8 (5) 283–289CrossRefGoogle Scholar
  26. Pehnt M (2003b): Life-cycle Analysis of Fuel Cell System Components. In: Vielstich W, Lamm A, Gasteiger HA (eds.): Handbook of Fuel Cells, J. Wiley & Sons, Chichester, p. 1293–1317Google Scholar
  27. Pehnt M, Ramesohl S (2003): Fuel Cells for Distributed Power: Benefits, Barriers and Perspectives. Study for the World Wide Fund for Nature and Fuel Cell Europe. Download www.panda.org/epo (Publications). IFEU Institut, Wuppertal Institut, Heidelberg, WuppertalGoogle Scholar
  28. Prognos (1998): Die längerfristige Entwicklung der Energiemärkte im Zeichen von Wettbewerb und Umwelt. Prognos AG, BaselGoogle Scholar
  29. Rade I (2001): Requirement and Availability of Scarce Metals for Fuel-Cell and Battery Elektric Vehicles. Department of Physical Resource Theory. Chalmers University of Technology and Göteborg University, GöteborgGoogle Scholar
  30. Schuckert M, Harsch M, Eyerer P, Saur K, Kaniut C (1998): Optimization of Three-Way Catalyst Systems by Life-Cycle Engineering Approach, Society of Automotive Engineering Inc.Google Scholar
  31. Schweimer GW (1999): Sachbilanz des 3 Liter Lupo. Volkswagen AG, WolfsburgGoogle Scholar
  32. Stein J (1998): Personal communication Jens Stein, FEV Motorentechnik GmbH & Co. KG (24.6.1998)Google Scholar
  33. UBA (1999): Durchführung eines Risikovergleiches zwischen Diesel-motoremissionen und Ottomotoremissionen hinsichtlich ihrer kanzerogenen und nicht-kanzerogenen Wirkungen. UBA For-schungsvorhaben 216 04 001/1. Fraunhofer-Institut für Toxi-kologie & Aerosolforschung, Institut für Energie- und Umweltforschung, Medizinisches Instititut fürUmwelthygiene der Universität Dusseldorf, Forschungs- und Beratungsinstitut Gefahr-stoffe GmbH, Berlin, Heidelberg, DüsseldorfGoogle Scholar

Copyright information

© Ecomed Publishers 2002

Authors and Affiliations

  1. 1.Institute for Energy and Environmental Research Heidelberg (Ifeu)HeidelbergGermany

Personalised recommendations