Skip to main content
Log in

Transdermal delivery of piroxicam using microemulsions

  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

To improve the skin permeability of piroxicam, a new oil-in-water microemulsion containing 0.5% piroxicam was developed. Among various oils investigated for their suitability as an oil phase for the microemulsion system, oleic acid showed both excellent solubility and skin permeation enhancing effect for piroxicam. Microemulsion existence ranges were identified through the construction of the pseudo-ternary phase diagram. The effect of the content of oleic acid and the ratio of the surfactant/cosurfactant on skin permeation of piroxicam were evaluated with excised rat skins. The optimum formulation with the highest skin permeation rate (47.14 μg/cm2/h) consisted of 0.5% piroxicam, 10% oleic acid, 60% Labrasol/ethanol (1:5) and water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Babar, A., Solanki, U. D., Cutie, A. J., and Plakogiannis, F., Piroxicam release from dermatological bases:In vitro studies using cellulose membrane and hairless mouse skin.Drug Dev. Ind. Pharm., 16, 523–540 (1990).

    Article  CAS  Google Scholar 

  • Baroli, B., Lopez-Quintela, M. A., Delgado-Charro, M. B., Fadda, A. M., and Blanco-Mendez, J., Microemulsions for topical delivery of 8-methoxsalen.J. Control Rel., 69, 209–218 (2000).

    Article  CAS  Google Scholar 

  • Buyuktimkin, N., Buyuktimkin, S., and Rytting, J. H., Chemical means of transdermal drug permeation enhancement. In: Ghosh, T.K., Pfister, W.R., Yum, S.I. (Eds.), Transdermal and Topical Drug Delivery Systems, Interpharm Press, IL, pp. 357–475 (1997).

    Google Scholar 

  • Curdy, C., Kalia, Y. N., Naik, A., and Guy, R. H., Piroxicam delivery into human stratum corneumin vivo: iontophoresis versus passive diffusion.J. Control Rel., 76, 73–79 (2001).

    Article  CAS  Google Scholar 

  • Delgado-Charro, M. B., Iglesias-Vilas, G., Blanco-Mendez, J., Lopez-Quintela, M. A., Marty, J.-P., and Guy, R. H., Delivery of a hydrophilic solute through the skin from novel microemulsion systems.Eur. J. Pharm. Biopharm., 43, 37–42 (1997).

    Article  Google Scholar 

  • Doliwa, A., Santoyo, S., and Ygartua, P., Effect of passive and iontophoretic skin pretreatments with terpenes on thein vitro skin transport of piroxicam.Int. J. Pharm., 229, 37–44 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Gay, C. L., Green, P. G., Guy, R. H., and Francoeur, M. L., Iontophoretic delivery of piroxicam across the skinin vitro. J. Control Rel., 22, 57–67 (1992).

    Article  CAS  Google Scholar 

  • Gao, S. and Singh, J., Effect of oleic acid/ethanol and oleic acid/ propylene glycol on thein vitro percutaneous absorption of 5-fluorouracil and tamoxifen and the macroscopic barrier property of porcine epidermis.Int. J. Pharm., 165, 45–55 (1998).

    Article  CAS  Google Scholar 

  • Hsu, L. R., Huang, Y. B., Wu, P. C., and Tsai, Y. H., Percutaneous absorption of piroxicam from FAPG base through rat skin: effects of oleic acid and saturated fatty acid added to FAPG base.Drug Dev. Ind. Pharm., 20, 1425–1437 (1994).

    Article  CAS  Google Scholar 

  • Huang, Y.-B., Wu, P.-C., Ko, H.-M., and Tsai, Y.-H., Cardamom oil as a skin permeation enhancer for indomethacin, piroxicam and diclofenac.Int. J. Pharm., 126, 111–117 (1995).

    Article  CAS  Google Scholar 

  • Kanikkannan, N., Kandimalla, K., Lamba, S. S., and Singh, M., Structure-activity relationship of chemical penetration enhancers in transdermal drug delivery.Curr. Med. Chem., 7, 593–608 (2000).

    PubMed  CAS  Google Scholar 

  • Kawakami, K., Yoshikawa, T., Moroto, Y., Kanaoka, E., Takahashi, K., Nishihara, Y., and Masuda, K., Microemulsion formulation for enhanced absorption of poorly soluble drugs: I. Prescription design.J. Control Rel., 81, 65–74 (2002).

    Article  CAS  Google Scholar 

  • Kreilgaard, M., Influence of microemulsions on cutaneous drug delivery.Adv. Drug Deliv. Rev., 54, S77-S98 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Okuyama, H., Ikeda, Y., Kasai, S., Imamori, K., Takayama, K., and Nagai, T., Influence of non-ionic surfactants, pH and propylene glycol on percutaneous absorption of piroxicam from cataplasm.Int. J. Pharm., 186, 141–148 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Peltora, S., Saarinen-Savolanien, P., Kiesvaara, J., Suhonen, T.M. and Urtti, A., Microemulsion for topical delivery of estradiol.Int. J. Pharm., 254, 99–107 (2003).

    Article  Google Scholar 

  • Rhee, Y.-S., Choi, J.-G., Park, E.-S., and Chi, S.-C., Transdermal delivery of ketpoprofen using microemulsions.Int. J. Pharm., 228, 161–170 (2002).

    Article  Google Scholar 

  • Santoyo, S., Arellano, A., Ygartua, P., and Martin, C., Penetration enhancer effects on thein vitro percutaneous absorption of piroxicam through rat skin.Int. J. Pharm., 117, 219–224 (1995).

    Article  CAS  Google Scholar 

  • Santoyo, S. and Ygartua, P., Effect of skin pretreatment with fatty acids on percutaneous absorption and skin retention of piroxicam after its topical application.Eur. J. Pharm. Biopharm., 50, 245–250 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Schiantarelli, P. and Cadel, S., Piroxicam pharmacology activity and gastrointestinal damage by oral and rectal route.Arzneim-Forsch., 31, 87–92 (1981).

    CAS  Google Scholar 

  • Schiantarelli, P., Cadel, S., Acerbi, D., and Pavesi, L., Anti-inflammatory activity and bioavailability of percutaneous piroxicam.Arzneim.-Forsch., 32, 230–235 (1982).

    CAS  Google Scholar 

  • Tessari, L., Ceciliani, L., Belluati, A., Letizia, G., Martorana, U., Pagliara, L., Pognani, A., Thovez, G., Siclari, A., and Torri, G., Aceclofenac cream versus piroxicam cream in the treatment of patients with minor traumas and phlogistic affections of soft tissues: a double-blind study.Curr. Ther. Res., 56, 702–712 (1995).

    Article  Google Scholar 

  • Thacharodi, D. and Rao, K. P., Transdermal absorption of nifedipine from microemulsions of lipophilic skin penetration enhancers.Int. J. Pharm., 111, 235–240 (1994).

    Article  CAS  Google Scholar 

  • Troconiz, J. I., Lopez-Bustamante, L. G., and Fos, D., High-performance liquid chromatographic analysis of piroxicam and tenoxicam in plasma, blood and buffer solution. Application to pharmacokinetic studies in small laboratory animals.Arzneim-Forsch., 43, 679–681 (1993).

    CAS  Google Scholar 

  • Tsai, Y.-H., Hsu, L.-R., and Naito, S.-I., Percutaneous absorption of piroxicam from ointment bases in rabbits.Int. J. Pharm., 24, 61–78 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Cheol Chi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, ES., Cui, Y., Yun, BJ. et al. Transdermal delivery of piroxicam using microemulsions. Arch Pharm Res 28, 243–248 (2005). https://doi.org/10.1007/BF02977723

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02977723

Key words

Navigation