Archives of Pharmacal Research

, Volume 30, Issue 2, pp 199–209 | Cite as

Antiestrogenic potentials of ortho-PCB congeners by single or complex exposure

  • Seung Min Oh
  • Byung Taek Ryu
  • Sang Ki Lee
  • Kyu Hyuck Chung
Article Drug development


Di-ortho PCB congeners 52, 138, 153 and 180, and the mono-ortho coplanar congener 118 have been detected as a complex mixture in human tissue in Korea. This study examined the antiestrogenic effects of samples exposed to single or combination treatment of the ortho-PCB congeners. In order to determined the combined toxicity, a sample mixture (M1, M2, M3, M4, and M5) was designed based on the ortho-PCB congeners found in Korean human tissue. With the exception of PCB 52, the ortho-PCB congeners (PCB 118, 138, 153, and 180) showed weak antiestrogenic activity. The antiestrogenic activity of di-ortho PCB congeners (PCB 138, 153, and 180) was induced by the depletion of endogenous E2 as well as through the ER-dependent pathway, whereas the antiestrogenic activity of mono-ortho PCB 118 was only induced through the depletion of endogenous E2. When the MCF7-BUS cells were treated with mixtures containing the no effective concentration (10-6 M) of the PCB congeners, M3 (PCB 118 + PCB 138 + PCB 180) and M4 (PCB 118 + PCB 138) had an antiestrogenic effect but the other mixtures (M1; PCB 52 + PCB 118 + PCB 138 + PCB 180, M2; PCB 118 + PCB 138 + PCB 153 + PCB 180, M5; PCB 118 + PCB 180) did not. Although the mechanism for the interaction between the PCB congeners is not completely understood, it was presumed that exposure to a mixture of the PCB congeners might have synergistic effects on their antiestrogenicity through the ER-independent pathway.

Key words

Ortho-PCB congeners Complex mixture Antiestrogenic activity E-screen assay EROD activity Aromatase activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arcaro, K. F, O’Keefe, P. W., Yang, Y, Clayton, W., and Gierthy, J. F., Antiestrogenicity of environmental polycyclic aromatic hydrocarbons in human breast cancer cells.Toxicology, 133, 115–127(1999).PubMedCrossRefGoogle Scholar
  2. Arnold, S. F., Klotz, D. M., Collins, B. M., Vonier, P. M., Gillette, L. J., and MaLachlan, J. A., Synergistic activation of estrogen receptor with combinations of environmental chemicals.Science, 272, 1489–1492 (1996).PubMedCrossRefGoogle Scholar
  3. Bates, M. N., Hannah, D. J., Buckland, S. J., Taucher, J. A., and van Maanen, T., Chlorinated organic contaminants in breast milk of New Zealand women.Environ. Health Perspect., 102(Suppl 1), 211–217 (1994).PubMedGoogle Scholar
  4. Bonefeld-Jorgensen, E. C, Andersen, H. R., Rasmussen, T. H., and Vinggaard, A. M., Effect of highly bioaccumulated polychlorinated biphenyl congeners on estrogen and androgen receptor activity.Toxicology, 158,141–153(2001).PubMedCrossRefGoogle Scholar
  5. Bosveld, A. T., Kennedy, S. W., Scinen, W., and van den Berg, M., Ethoxyresorufin-O-deethylase (EROD) inducing potencies of planar chlorinated aromatic hydrocarbons in primary cultures of hepatocytes from different developmental stage of the chicken,Arch. Toxicoi, 71, 746–750 (1997).CrossRefGoogle Scholar
  6. Bradford, M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem., 72, 248–254 (1976).PubMedCrossRefGoogle Scholar
  7. Bradlow, H. L, Telang, N. T., Sepkovic, D. W., and Osborne, M. P., 2-Hydroxyestrone: the ‘good’ estrogen,J. Endocr, 150, s529-s265(1996).Google Scholar
  8. Buchanan, D. L, Ohsako, S., Tohyama, C, Cooke, P. S., and Iguchi, T., Dioxin inhibition of estrogen-induced mouse uterine epithelial mitogenesis involves changes in cyclin and transforming growth factor-beta expression.Toxicol. Sci., 66, 62–68 (2002).PubMedCrossRefGoogle Scholar
  9. Buchanan, D. L, Sato, T., Peterson, R. E., and Cooke, P. S., Antiestrogenic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin in mouse uterus: critical role of the aryl hydrocarbon receptor in stromal tissue.Toxicoi. Sci., 57, 302–311. (2000)CrossRefGoogle Scholar
  10. Bulger, W. H. and Kupfer, D., Estrogenic activity of pesticides and other xenobiotics on the uterus and male reproductive tract. In: Korach, M., McLachlan, J. A. (eds) Endocrine toxicology. Raven Press, New York, pp 1–33. (1985).Google Scholar
  11. Chu, I., Villeneuve, D. C, Yagminas, A., Lecavalier, P., Hakansson, H., Ahlborg, U. G, Valli, V. E., Kennedy, S. W., Bergman, A., Seegal, R. F, and Feeley, M., Toxicity of PCB 77 (3,3’,4,4’- Tetrachlorobiphenyl) and PCB 118 (2,3’,4,4’,5-Pentachlorobi-phenyl) in the rat following subchronic dietary exposure,Fund. Appl. Toxicoi., 26, 282–292 (1995).CrossRefGoogle Scholar
  12. Cogliano, V. J., Assessing the cancer risk from environmental PCBs.Environ. Health Perspect, 106, 317–323 (1998).PubMedCrossRefGoogle Scholar
  13. Dannan, G. A., Porubek, D. J., Netson, S. D., Waxman, D. J., and Guengerish, F P., 17β-Estradiol 2-and 4-hydroxylation catalyzed by rat hepatic cytochrome P450: roles of individual forms, inductive effects, developmental patterns, and alterations by gonadectomy and hormone replacement,Endocrinology, 118, 1952–1960 (1986).PubMedGoogle Scholar
  14. Dewailly, E., Ryan, J. J., Lailberte, C, Bruneau, S., Weber, J. P., Gingras, S., and Carrier, G, Exposure of remote martime populations to coplanar PCBs.Environ. Health Perspect., 102(Suppl 1), 205–209(1994).PubMedGoogle Scholar
  15. Drenth, H. J., Bouwman, C. A., Scinen, W., and Van den Berg, M., Effects of some persistent halogenated environmental contaminants on aromatase (CYP19) activity in the human choriocarcinoma cell line JEG-3.Toxicoi. Appl. Pharmacol., 148,50–55(1998).CrossRefGoogle Scholar
  16. Ecobichon, D. J. and MacKenzie, D. O., The uterotrophic activity of commercial and isomerically-pure chlorobiphenyls in the rat,Res. Commun. Chem. Path. Pharmacol., 9, 85–95, (1974).Google Scholar
  17. Environmental Health in Europe No. 3. Level of PCBs, PCDDs and PCDFs in human milk. Second round of WHO-coordinated exposure study (1996).Google Scholar
  18. Furst, P. C. and Wilmers, K., Human milk as a bioindicator for body burden of PCDDs, PCDFs, organochlorine pesticides, and PCBs.Environ. Health Perspect, 102(Suppl. 1), 187–193(1994).PubMedGoogle Scholar
  19. Gillette, J. S., Hansen, L. G, and Rose, R. L, Metabolic effects of episodic polychlorinated biphenyl (PCB) congeners,Rev. Toxicoi. Environ. Toxicoi., 4,129–159 (2002).Google Scholar
  20. Graumann, K., Breithofer, A., and Jungbauer, A., Monitoring of estrogen mimics by a recombinant yeast assay: synergy between natural and synthetic compounds?The science of the total environment, 225, 69–79 (1999).PubMedCrossRefGoogle Scholar
  21. Hestermann, E. V, Stegeman, J. J., and Hahn, M. E., Relative contributions of affinity and intrinsic efficacy to aryl hydrocarbon receptor ligand potency,Toxicoi. Appl. Pharmacol., 168,160–172(2000).CrossRefGoogle Scholar
  22. Kimbrough, R. D., Polychlorinated biphenyls (PCBs) and human health: an update.Crit. Rev. Toxicol., 25,133–163 (1995).PubMedCrossRefGoogle Scholar
  23. Korach, K. S., Sarver, P., Chae, K., McLachlan, J. A., and McKinney, J. D., Estrogen receptor-binding activity of polychlorinated hydroxybiphenyls: Conformationally restricted structural probes,Mol. Pharmacol., 33,120–126 (1988).PubMedGoogle Scholar
  24. Korach, K. S. Davis, V. L, Curtis, S. W., and Bcchinfuso, W. P., Xenoestrogens and estrogen receptor action, In Thomas, J. A., and Colby, H. D. (Eds.).Endcrine Toxicology, Taylor & Francis, pp. 181–205, (1997).Google Scholar
  25. Leece, B., Denomme, M. A., Towner, R., Li, A., Landers, J., and Safe, S., Nonadditive interactive effects of polychlorinated biphenyl congeners in rats: role of the 2,3,7,8-tetrachlorodi-benzo-p-dioxin receptor.Canadian Journal of Physiology and Pharmacology, 65,1908–1912 (1987).PubMedGoogle Scholar
  26. Machala, M. and Vondracek, J., Estrogenic activity of xenobiotics.Vet. Med., 43, 311–317 (1998).Google Scholar
  27. MaFarland, V. A. and Clarke, J. U., Environmental occurrence, abundance, and potential toxicity of polychlorinated biphenyl congeners: considerations for a congener-specific analysis.Environ. Health Perspect, 81, 225–239 (1989).CrossRefGoogle Scholar
  28. Navas, J. M. and Segner, H., Antiestrogenic activity of anthropogenic and natural chemicals.Environ. Sci. Pollut. Res., 5, 75–82(1998).Google Scholar
  29. Oenga, G N., Spink, D. C, Carpenter, D. O., TCDD and PCBs inhibit breast cancer cell proliferation.Toxicol. in Vitro, 18, 811–819(2004).PubMedCrossRefGoogle Scholar
  30. Olea, N., Pulgar, R., Perez, P., Olea-Serrano, F., Rivas, A., Novillo-Fertrell, A., Pedraza, V, Soto, A. M., and Sonnenschein, C, Estrogenicity of resin-based composites and sealants used in dentistry.Environ. Health Perspect., 104,198–305 (1996).CrossRefGoogle Scholar
  31. Parkinson, A., Robertson, L., and Safe, S., Polychlorinated biphenyls as inducers of hepatic microsomal enzymes: structure-activity rules,Chem. Biol. Interact, 30, 271–285 (1981).CrossRefGoogle Scholar
  32. Perez, P., Pulgar, R., Olea-Serrano, F., Villalobos, M., Rivas, A., Metzler, M., Pedraza, V, and Olea, N., The estrogenicity of bisphenol A-related diphenylalkanes with various substituents at the central carbon and the hydroxy groups.Environ. Health Perspect, 106,198–305(1998).CrossRefGoogle Scholar
  33. Plišková, M., Vondráèek, J., Canton, R. F, Nera, J., Koèan, A., Petrik, J., Tronvec, T., Sanderson, T, van den Berg, M., and Machala, M., Impact of polychlorinated biphenyls contamination on estrogenic activity in human male serum.Environ. Health Perspect, 113,1277–1284(2005).PubMedCrossRefGoogle Scholar
  34. Porter, W. and Safe, S. H., Estrogenic and antiestrogenic compounds, In Puga, A., and Wallace, K.B. (Eds). Molecular biology of the toxic response. Talylor & Francis, pp. 269–279, (1999).Google Scholar
  35. Safe, S., Astroff, B., Harris, M., Zacharewski, T., Dickerson, R., Romkes, M., and Biegel, L. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related compounds as antioestrogens: characterization and mechanisms of action.Pharmacol. Toxicol., 69, 400–409 (1991).PubMedGoogle Scholar
  36. Safe, S., Polychlorinated biphenyls (PCBs): Environmental impact, biological and toxic responses, and implications for risk assessment.Critical Reviews in Toxicology, 24, 87–149 (1994a).PubMedCrossRefGoogle Scholar
  37. Safe, S. Dietary and environmental estrogens and antiestrogens and their possible role in human disease.Environ. Sci. Pollut. Res., 1,29–33 (1994b).CrossRefGoogle Scholar
  38. Safe, S., Modulation of gene expression and endocrine response pathways by 2,3,7,8-tetrachlorodibenzo-p-dioxin and related compounds.Pharmacology and Therapeutics, 67, 247–281 (1995).PubMedCrossRefGoogle Scholar
  39. Safe, S., Limitations of the toxic equivalency factor approach for risk assessment of TCDD and related compounds,Teratog. Carcinog. Mutagen., 17, 285–304(1997).PubMedCrossRefGoogle Scholar
  40. Safe, S., Interactions between hormone and chemicals in breast cancer.Annu. Rev. Pharmacol. Toxicol., 38, 121–158 (1998).PubMedCrossRefGoogle Scholar
  41. Safe, S. and Wörmke, M., Inhibitory arylhydrocarbon receptorestrogen receptor a cross-talk and mechanisms of action.Chemical Research in toxicology, 16, 807–816 (2003).PubMedCrossRefGoogle Scholar
  42. Schmitz, H.-J., Hagenmaier, A., Hagenmaier, H.-P, Bock, K. W., and Schrenk, D., Potency of mixtures of polychlorinated biphenyls as inducers of dioxin receptor-regulated CYP1A activity in rat hepatocytes and H4IIE cells.Toxicology, 99, 47–54(1995).PubMedCrossRefGoogle Scholar
  43. Schneider, J., Huh, M. M., Bradlow, H. L., and Fishman J., Antiestrogenic action of 2-hydroxyestrone on MCF-7 human breast cancer cells,Journal of Biological Chemistry, 259, 4840–4845 (1984).PubMedGoogle Scholar
  44. Shou, M., Korzekwa, K. R., Brooks, E. N., Krausz, K. W., Gonzalez, F. J., and Gelboin, H. V, Role of human hepatic cytochrome P450 1A2 and 3A4 in the metabolic activation of estrone,Carcinogenesis, 18, 207–214 (1997).PubMedCrossRefGoogle Scholar
  45. Simpson, E. R., Mahendroo, M. S., Means, G D., Kilgore, M. W., Hinshelwood, M. M., Graham-Lorence, S., Amarneh, B., Ito, Y, Fischer, C. R., Michael, M. D., Mendelson, C. R., and Bulun, S. E., Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis.Endocrine Reviews, 15,342–355(1994).PubMedCrossRefGoogle Scholar
  46. Skehan, P., Storeng, R., Scudiero, D., Monk, A., McMahon, J., Vistica, D., Warren, J. T, Bokesch, H., Kenny, S., and Boyd, M. R., New colorimetric cytotoxicity assay for anticancer-drug screening.Journal of the National Cancer Institute, 82, 1107–1112(1990).PubMedCrossRefGoogle Scholar
  47. Smeets, J. M. W., van Holsteijn, I., Giesy, J. P., and van den Berg, M., The anti-estrogenicity of Ah receptor agonists in Carp(Cyprinus carpio) hepatocytes.Toxicological Sciences, 52,178–188(1999).PubMedCrossRefGoogle Scholar
  48. Soto, A. M., Sonnenschein, C, Chung, K. L, Fernandez, M. F, Olea, N., and Serrano, F. O., The E-SCREEN assay as a tool to identify estrogens: An update on estrogenic environmental pollutants.Environmental Health Perspectives, 103(suppl 71), 113–122(1995).PubMedCrossRefGoogle Scholar
  49. Spink, D. C, Eugster, H. P., Lincoln, D. W. 2nd, Schuetz, J. D., Schuetz, E. G., Johnson, J. A., Kaminsky, L. S., and Gierthy, J. F., 17 Beta-estradiol hydroxylation catalyzed by human cytochrome P450 1A1: a comparison of the activities induced by 2,3,7,8-tetrachlorodibenz-p-dioxin in MCF-7 cells with those from heterologous expression of the cDNA,Arch. Biochem. Biophys., 293, 342–348 (1992).PubMedCrossRefGoogle Scholar
  50. Stancel, G M., Boettger-Tong, H., Chiappetta, C, Hyder, S. M., Kirkland, J. L, Murthy, L., and Loose-Mitchell, D. S., Toxicology of estrogens and environmental estrogens: what is the role of elemental interactions.Environ, Health Perspect, 103(Suppl 7), 29–33(1995).CrossRefGoogle Scholar
  51. Suchar, L. A., Chang, R. L., Rosen, R. T, Lech, J., and Conney, A. H., High performance liquid chromatography separation of hydroxylated estradiol metabolites: formation of estradiol metabolites by liver microsomes from male and female rats.Journal of Pharmacology and Experimental Therapeutics, 272,197–206(1995).PubMedGoogle Scholar
  52. Suh, J., Kang, J. S., Yang, K. H., and Kaminski, N. E., Antagonism of aryl hydrocarbon receptor-dependent induction of CYP 1A1 and inhibition of IgM expression by di-ortho-substituted polychlorinated biphenyls.Toxicol. Appl. Pharmacol., 187, 11–21 (2003).PubMedCrossRefGoogle Scholar
  53. Tsuchiya, Y, Nakajima, M., and Yokoi, T., Cytochrome P450-mediated metabolism of estrogens and its regulation in human,Cancer Lett., 227,115–124 (2005).PubMedCrossRefGoogle Scholar
  54. Vakharia, D. D. and Gierthy, J. F., Use of a combined human liver microsome-estrogen receptor binding assay to assess potential estrogen modulating activity of PCB metabolites.Toxicology Lett., 114, 55–65 (2000).CrossRefGoogle Scholar
  55. Woodhouse, A. and Cooke, G M., Suppression of aromatase activityin vitro by PCBs 28 and 105 and Arochlor 1221,Toxicology Lett., 152, 91–100 (2004).CrossRefGoogle Scholar
  56. Yamazaki, H., Shaw, P. W., Guengerich, F. P., and Shimada T., Roles of cytochromes P450 1A2 and 3A4 in the oxidation of estradiol and estrone in human liver microsomes,Chem. Res. Toxicol., 11,659–665(1998).PubMedCrossRefGoogle Scholar
  57. Yoo, Y C, Lee, S. K., Lee, S. Y, Yang, J. Y, In, S. W., Kim, K. W., and Chung, K. H., Distribution of organochlorines pesticides in Korean human tissue.Yakhak Hoeji, 45, 366–377 (2002).Google Scholar
  58. Zacharewski, T, Harris, M., and Safe, S., Evidence for the mechanism of action of the 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated decrease of nuclear estrogen receptor levels in wild-type and mutant mouse heap 1c1c7 cells.Biochem. Pharmacol., 41,1931–1939 (1991).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2007

Authors and Affiliations

  • Seung Min Oh
    • 2
  • Byung Taek Ryu
    • 2
  • Sang Ki Lee
    • 1
  • Kyu Hyuck Chung
    • 2
  1. 1.National Institute of Scientific InvestigationSeoulKorea
  2. 2.College of PharmacySungkyunkwan UniversitySuwonKorea

Personalised recommendations