Advertisement

Pharmacokinetics of 11-hydroxyaclacinomycin X (ID-6105), a novel anthracycline, after i.v. bolus multiple administration in rats

  • Bo-Im Yoo
  • Kwang Bok Ahan
  • Min Hee Kang
  • Oh-Seung Kwon
  • Young-Soo Hong
  • Jung Joon Lee
  • Hong Sub Lee
  • Jung Su Ryu
  • Tae Yong Kim
  • Dong-Cheul Moon
  • Sukgil Song
  • Youn Bok Chung
Drug efficacy

Abstract

We investigated the pharmacokinetics of 11-hydroxyaclacinomycin X (ID-6105), a novel anthracycline, after intravenous (i.v.) bolus administration at a multiple dose every 24 h for 5 days in rats. To analyze ID-6105 levels in biological samples, we used an HPLC-based method which was validated in a pharmacokinetic study by suitable criteria. The concentrations of ID-6105 after the multiple administration for 5 days were not significantly different from the results after the single administration. The t1/2α, t1/2β, Vdss, and CLt after the multiple administration were not significantly different from the values after the single administration. Moreover, the concentrations of ID-6105 1 min at day 1-5 after i.v. bolus multiple administration did not show the significant difference. Of the various tissues, ID-6105 mainly distributed to the kidney, lung, spleen, adrenal gland, and liver after i.v. bolus multiple administration. ID-6105 concentrations in the kidney or lung 2 h after i.v. bolus administration were comparable to the plasma concentration shortly after i.v. bolus administration. However, the ID-6105 concentrations in various tissues 48 h after i.v. bolus administration decreased to low levels. ID-6105 was excreted largely in the bile after i.v. bolus multiple administration at the dose of 3 mg/kg. The amounts of ID-6105 found in the bile by 12 h or in the urine by 48 h after the administration were calculated to be 14.1% or 4.55% of the initial dose, respectively, indicating that ID-6105 is mostly excreted in the bile. In conclusion, ID-6105 was rapidly cleared from the blood and transferred to tissues, suggesting that ID-6105 might not be accumulated in the blood following i.v. bolus multiple dosages of 3 mg/kg every 24 h for 5 days. By 48 h after i.v. bolus administration, ID-6105 concentrations in various tissues had decreased to very low levels. The majority of ID-6105 appears to be excreted in the bile.

Key words

11-Hydroxyaclacinomycin X (ID-6105) Pharmacokinetics Multiple administration Tissue distribution Excretion 

References

  1. Arcamone, F., Cassinelli, G., Fantini, G., Graein, A., Orezzi, P. Poli, C., and Spalla, C., Adriamycin, 14-hydroxy daunomycin, a new antitumor antibiotic fromStreptomyces peucetius var.caesius. Biotechnol. Bioeng., 11, 1101–1110 (1969).CrossRefGoogle Scholar
  2. Hong, Y.-S., Hwang, C. K., Hong, S.-K., Kim, Y. H., and Lee, J. J., Molecular cloning and characterization of the aklavinone 11-hydroxyase gene ofStreptomyces peucetius subsp.caesius ATCC 27952.J. Bacteriology, 22, 7096–7101 (1994).Google Scholar
  3. Hwang, C. K., Kim, H. S., Hong, Y.-S., Kim, Y. H., Hong, S.-K., Kim, S.-J., and Lee, J. J., Expression ofStreptomyces peucetius genes for doxorubicin resistance and aklavinone 11-hydroxylase inStreptomyces galilaeus ATCC 31133 and production of a hybrid aclacinomycin.Antimicrob. Agents Chemother., 39, 1616–1620 (1995).PubMedGoogle Scholar
  4. Iguchi, H., Seryu, Y., Kiyosaki, T., Hori, S., Tone, H., and Oki, T., Studies on the absorption, excretion and distribution of aclacinomycin A: absorption, excretion and distribution of 14C-or 3H-aclacinomycin A in mice, rats and rabbits.Jpn. J. Antibiot., 33, 169–178 (1980a).PubMedGoogle Scholar
  5. Iguchi, H., Matsushita, Y., Ohmori, K., Hirano, S., Kiyosaki, T., Hori, S., Tone, H., and Oki, T., Studies on the absorption, excretion and distribution of aclacinomycin A: absorption, excretion and distribution of aclacinomycin A in mice, rabbits and dogs by photometric assay.Jpn. J. Antibiot., 33,179–191 (1980b).PubMedGoogle Scholar
  6. Johdo, O., Watanabe, Y., Ishikura, T., Yoshimoto, A., Naganawa, H., Sawa, T., and Tacheuchi, T., Anthracycline metabolites fromStreptomyces violaceus A262 II: New anthracycline epelmycins produced by a blocked mutant strain SU2-730.J. Antibiotics, 44, 1121–1129 (1991).Google Scholar
  7. Kim, H. S., Kim, Y. H., Yoo, O. J., and Lee, J. J., Aclacinomycin X, a novel anthracycline antibiotic produced byStreptomyces galilaeus ATCC 31133.Biosci. Biotech. Biochem., 60, 906–908 (1996a).CrossRefGoogle Scholar
  8. Kim, H. S., Hong, Y.-S., Kim, Y. H., Yoo, O. J., and Lee, J. J., New Anthracycline metabolites produced by the aklavinone 11-hydroxylase gene inStreptomyces galilaeus ATCC 31133.J. Antibiotics, 49, 355–360 (1996b).Google Scholar
  9. Myers, C. E., Miminaugh, E. G., Yeh, G. C., and Sinha, B. K., Biochemical mechanisms of tumor cell kill by anthracyclines,In Anthracycline and anthracenedionebased anticancer agents. Ed. Lown J. W., Elsevier, Amsterdam, pp. 527–569 (1998).Google Scholar
  10. Nakagawa, M., Furihata, K., Adachi, K., Seto, H., and Otake, N., The structure of a new anthracycline, cinerubicin X produced by a blocked mutant ofStreptomyces violaceo-chromogenes.J. Antibiotics, 39, 1178–1179 (1986).Google Scholar
  11. Niemi, J., Ylihonko, K., Hakala, J., Parssinen, R., Kopio, A., and Mantsala, P., Hybrid anthracycline antibiotics: Producion of new anthracyclines by cloned genes fromStreptomyces purpurascens inStreptomyces galilaeus.Microbiology, 140, 1351–1358 (1995).Google Scholar
  12. Oki, T., Kitamura, I., Matsuzawa, Y., Shibarmoto, N., Ogasawara, T., Yoshimoto, T., Inui, T., Naganawa, H., Takeuchi, T., and Umezawa, H., Antitumor anthracycline antibiotics, aclacinomycin A and analogues. II: Structural determination.J. Antibiotics, 32, 801–819 (1979).Google Scholar
  13. Yamaoka, K., Tanigawara, Y., Nakagawa, Y., and Uno, T., A pharmacokinetic analysis program (MULTI) for microcomputer.J. Pharmcobio. Dynamics, 4, 879–885 (1981).Google Scholar
  14. Yoshimoto, A., Fujii, S., Johdo, O., Kubo, K., Ishikura, T., Naganawa, H., Sawa, T., Tacheuchi, T., and Umezawa, H., Intensely potent anthracycline antibiotic oxaunomycin produced by a blocked mutant of the daunorubicin-producing microorganism.J. Antibiotics, 39, 902–909 (1986).Google Scholar

Copyright information

© The Pharmaceutical Society of Korea 2005

Authors and Affiliations

  • Bo-Im Yoo
    • 4
  • Kwang Bok Ahan
    • 4
  • Min Hee Kang
    • 4
  • Oh-Seung Kwon
    • 1
    • 4
  • Young-Soo Hong
    • 2
    • 4
  • Jung Joon Lee
    • 2
    • 4
  • Hong Sub Lee
    • 3
    • 4
  • Jung Su Ryu
    • 3
    • 4
  • Tae Yong Kim
    • 3
    • 4
  • Dong-Cheul Moon
    • 4
  • Sukgil Song
    • 4
  • Youn Bok Chung
    • 4
  1. 1.Korea Institute of Science and TechnologySeoulKorea
  2. 2.Korea Research Institute of Bioscience and BiotechnologyTaejonKorea
  3. 3.Research Laboratories, ILDONG Pharmaceutical Co. Ltd.Yongin, KyongkiKorea
  4. 4.National Research Laboratory (NRL) of PK/PD, Biotechnology Research Institute, College of PharmacyChungbuk National UniversityCheongju ChungbukKorea

Personalised recommendations