Advertisement

Archives of Pharmacal Research

, Volume 30, Issue 5, pp 603–607 | Cite as

Resveratrol-induced depression of the mechanical and electrical activities of the rat heart is reversed by glyburide: evidence for possible KATP channels activation

  • Mesut Buluc
  • Murat Ayaz
  • Belma Turan
  • Emine Demirel-Yilmaz
Articles Drug Development

Abstract

Resveratrol, a natural phytoalexin found in wine, has been suggested to have benefits in preventing cardiovascular diseases. However, the direct effects of resveratrol on the activity of cardiac tissues and its mechanism of action have not been determined. This study examined the effects of resveratrol on the right and left atrium and left papillary muscle isolated from the rat heart. The contractile responses of the right atrium and papillary muscle and the action potential from the left atrium were recorded and the effects of resveratrol on these responses were observed. The resting force of the isolated right atrium and the peak developed force of the left papillary muscle were depressed by resveratrol (0.1 nM – 0.1 mM). Exposure to the KATP channel blocker glyburide (3 μM) prevented significantly the resveratrol-induced decrease. Resveratrol (0.1 mM) shortened the repolarization phase of action potential recorded from the left atrium and this effect of resveratrol was reversed by glyburide (3 μM). These results indicated that resveratrol depressed cardiac muscle contraction and shortened action potential duration probably due to the activation of KATP channels in the rat heart.

Key words

Resveratrol Rat heart Contraction Membrane potential KATP channels 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, J. E., Contney, S. J., Singh, R., Kalyanaraman, B., Gross, G. J., and Bosnjak, Z. J., Nitric oxide activates the sarcolemmal KATP channel in normoxic and chronically hypoxic heart by a cyclic GMP-dependent mechanism.J. Mol. Cell Cardiol., 33, 331–341 (2001).PubMedCrossRefGoogle Scholar
  2. Bradamante, S., Barenghi, L., Piccinini, F., Bertelli, A.A.E., De Jonge, R., Beemster, P., and De Jong, J.W., Resveratrol provides late-phase cardioprotection by means of a nitric oxide- and adenosine-mediated mechanism.Eur. J. Pharmacol., 465, 115–123 (2003).PubMedCrossRefGoogle Scholar
  3. Brady, A. J., Warren, J. B., Poole-Wilson, P. A., Williams, T. J., and Harding, S. E., Nitric oxide attenuates cardiac myocyte contraction.Am. J. Physiol., 265, H176-H182 (1993).PubMedGoogle Scholar
  4. Buluc, M. and Demirel-Yilmaz, E., Possible mechanism for depression of smooth muscle tone by resveratrol. In: Adv. Rec. Cardiovas. Res. Ed.: A. Varro, A. Vegh. Monduzzi Editore, Bologna, Italy, pp. 55–59, (2002).Google Scholar
  5. Buluc, M. and Demirel-Yilmaz, E., Resveratrol decreases calcium sensitivity of vascular smooth muscle and enhances cytosolic calcium increase in endothelium.Vas. Pharmacol., 44(4), 231–237(2006).Google Scholar
  6. Chen, C. C., Lin, Y. C., Chen, S. A., Luk, H. N., Ding, P. Y. A., Chang, M. S., and Chiang, C. E., Shortening of cardiac action potentials in endotoxic shock in guinea pigs is caused by an increase in nitric oxide activity and activation of the adenosine triphosphate-sensitive potassium channel.Crit. Care Med., 28, 1713–1720 (2000).PubMedCrossRefGoogle Scholar
  7. Chen, C. K. and Pace-Asciak, C. R., Vasorelaxing activity of resveratrol and quercetin in isolated rat aorta.Gen. Pharmacol., 27, 363–366 (1996).PubMedGoogle Scholar
  8. Das, D. K., Sato, M., Ray, P. S., Maulik, G., Engelman, R. M., Bertelli, A. A., and Bertelli, A., Cardioprotection of red wine: role of polyphenolic antioxidants.Drugs Exp. Clin. Res., 25, 115–120 (1999).PubMedGoogle Scholar
  9. El-Mowafy, A. M., Resveratrol activates membrane-bound guanylyl cyclase in coronary arterial smooth muscle: A novel signaling mechanism in support of coronary protection.Biochem. Biophys. Res. Commun., 291, 1218–1224 (2002).PubMedCrossRefGoogle Scholar
  10. Fremont, L., Biological effects of resveratrol.Life Sci., 66, 663–673 (2000).PubMedCrossRefGoogle Scholar
  11. German, J. B. and Walzern, R. L., The health benefits of wine.Annu. Rev. Nutr., 20, 561–593 (2000).PubMedCrossRefGoogle Scholar
  12. Han, J., Kim, N., Joo, H., Kim, E., and Earm, Y. E., ATP- sensitive K+ channels activation by nitric oxide and protein kinase G in rabbit ventricular myocytes.Am. J. Physiol., 283, H1545-H1554 (2002).Google Scholar
  13. Hertog, M. G. L., Feskens, E. J. M., Hollman, P. C. H., Katan, M. B., and Kromhout, D., Dietary antioxidant flavonoids and risk of coronary heart disease.The Zutphen Elderly Study.Lancet, 342, 1007–1011 (1993).PubMedCrossRefGoogle Scholar
  14. Hung, L. M., Su, M. J., and Chen, J. K., Resveratrol protects myocardial ischemia-reperfusion injury through both NO- dependent and NO-independent mechanisms.Free Radic. Biol. Med., 36, 774–778 (2004).PubMedCrossRefGoogle Scholar
  15. Jager, U. and Nguyen-Duong, H., Relaxant effect of trans-resveratrol on isolated porcine coronary arteries.Arzneim. Forsch., 49, 207–211 (1999).Google Scholar
  16. Liew, R., Stagg, M. A., MacLeod, K. T., and Collins, P., The red wine phenol, resveratrol, exerts acute direct action on guinea-pig ventricular myocytes.Eur. J. Pharmacol., 519, 1–8 (2005).PubMedCrossRefGoogle Scholar
  17. Martin, S., Andriambeloson, E., Takeda, K., and Andriantsitohaina, R., Red wine polyphenols increase calcium in bovine aortic endothelial cells: a basis to elucidate signaling pathways leading to nitric oxide production.Br. J. Pharmacol., 135, 1579–1587 (2002).PubMedCrossRefGoogle Scholar
  18. Naderali, E. K., Doyle, P. J., and Williams, G., Resveratrol induces vasorelaxation of mesenteric and uterine arteries from female guinea pigs.Clin. Sci., 98, 537–543 (2000).PubMedCrossRefGoogle Scholar
  19. Nichols, C. G., Ripol, C., and Lederer, W. J., ATP-sensitive potassium channel modulation of the guinea pig ventricular action potential and contraction.Circ. Res., 68, 280–287 (1991).PubMedGoogle Scholar
  20. Orallo, F., Alvarez, E., Camina, M., Leiro, J. M., Gomez, E., and Fernandez, R., The possible implication of resveratrol in the cardioprotective effects of long-term moderate wine consumption.Mol. Pharmacol., 61, 294–302 (2002).PubMedCrossRefGoogle Scholar
  21. Ray, P. S., Maulik, G., Cordis, G. A., Bertelli, A. A., Bertelli, A., and Das, D. K., The red wine antioxidant resveratrol protects isolated rat hearts from ischemia reperfusion injury.Free Radic. Biol. Med., 27, 160–169 (1999).PubMedCrossRefGoogle Scholar
  22. Sato, M., Ray, P. S., Meulki, G., Meulki, N., Engelman, R. M., Bertelli, A. A. E., and Das, D. K., Myocardial protection with red wine extract.J. Cardiovas. Pharmacol., 35, 263–268 (2000).CrossRefGoogle Scholar
  23. Schlossmann, J., Feil, R., and Hofmann, F., Signaling through NO and cGMP-dependent protein kinases.Ann. Med., 35, 21–27 (2003).PubMedCrossRefGoogle Scholar
  24. Soleas, G. J., Diamandis, E., and Goldberg, D. M., Resveratrol: a molecule whose time has come? and gone?Clin. Biochem., 30, 91–113 (1997).PubMedCrossRefGoogle Scholar
  25. Wahler, G. M. and Sperelakis, N., Intracellular injection of cyclic GMP depresses cardiac slow action potentials.J. Cyclic Nucleotid Protein Phosphor. Res., 10, 83–95 (1985).Google Scholar
  26. Zhao, J., Ma, H. J., Dong, J. H., Zhang, L. P., Liu, H. L., and Wang, Q. S., Electrophysilogical effects of resveratrol on guinea pig papillary muscles.Acta Physiol. Sin., 56, 708–712 2004).Google Scholar

Copyright information

© The Pharmaceutical Society of Korea 2007

Authors and Affiliations

  • Mesut Buluc
    • 1
  • Murat Ayaz
    • 2
  • Belma Turan
    • 2
  • Emine Demirel-Yilmaz
    • 1
  1. 1.Department of Pharmacology and Clinical PharmacologyAnkara University Faculty of MedicineAnkaraTurkey
  2. 2.BiophysicsAnkara University, Faculty of MedicineAnkaraTurkey

Personalised recommendations