Archives of Pharmacal Research

, Volume 30, Issue 6, pp 785–792 | Cite as

Promising ternary dry powder inhaler formulations of cromolyn sodium: Formulation andIn vitro-In vivo evaluation

  • Ahmed Abd Elbary
  • Hanan M. El-Laithy
  • Mina I. Tadros
Article Drug Efficacy


Glucose monohydrate and sorbitol were evaluated as alternative carriers to á-lactose monohydrate in dry powder inhalations. Cromolyn sodium (CS) - carrier binary formulae were prepared and testedin vitro by aerosolizationvia a twin stage impinger using three types of inhaler devices; Spinhaler®, Aerolizer®and Handihaler®. Glucose monohydrate and sorbitol-containing formulae that were inhaled via a Handihaler® showed significantly higher drug fine particle fractions (P<0.001 ) than that of the same formulae aerosolized via other devices. Upon storage of the prepared formulae under uncontrolled humidity, that may be encountered during storage and use, marked reductions in these fractions were observed. Incorporation of an optimum Aerosil® 200 concentration, as a ternary component, minimized this effect. A urinary excretion pharmacokinetic method was used to evaluate the bioavailability of the selected ternary formulae, inhaled via a Handihaler®, relative to the marketed Intal® Spincaps®, inhaled via a Spinhaler®. It was found that the relative bioavailability percentages of the developed formulae were more than twice that of the marketed one suggesting possible future utilization of these more effective ternrry formulae using the more efficient Handihaler® inhaler device.

Key words

Dry powder inhaler Alternative carriers Glucose monohydrate Sorbitol Aerosil® 200 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aswania, O. A. and Chrystyn, H., Relative lung bioavailability of generic sodium cromoglycate inhalers used with and without a spacer device.Pulmon. Pharmaco. Ther., 14, 129–133 (2001).CrossRefGoogle Scholar
  2. Bode, R., Ferch, H., and Fratzscher, H., Technical Bulletin Aerosil, No. 4. Nippon Aerosil, p. 4 (1967).Google Scholar
  3. British Pharmacopoeia, Aerodynamic assessment of fine particles, British Pharmacopoeia Commission, HMSO, London, Appendix XII F., A194- A200 (2000).Google Scholar
  4. Byron, P. R., Drug delivery devices: issues in drug development.The Proceedings of the American Thoracic Society, 1, 321–328 (2004).CrossRefGoogle Scholar
  5. Chen, L. R., Young, V. G., Ballesteros, D. L., and Grant, D. J. W., Solid state behavior of cromolyn sodium hydrates.J. Pharm. Sci., 88, 1191–1200 (1999).PubMedCrossRefGoogle Scholar
  6. Chew, N. Y. K. and Chan, H. K.,In vitro aerosol performance and dose uniformity between the Foradil® Aerolizer® and the Oxis® Turbuhaler®.J. Aerosol. Med. Winter, 14, 495–501 (2001).PubMedCrossRefGoogle Scholar
  7. Chew, N. Y. K., Bagster, D. A., and Chan, H. K., Effect of particle size, air flow and inhaler device on the aerosolization of disodium cromoglycate powders.Int. J. Pharm., 206, 75–83 (2000).PubMedCrossRefGoogle Scholar
  8. Dollery, C., Therapeutic drugs, Vol. 1, 2nd edition, C338–C342. New York: Churchill Livingstone (1999).Google Scholar
  9. Gardner, J.J., Determination of sodium cromoglycate in human urine by high performance liquid chromatography on an anion exchange column.J. Chromatogr., 305, 228–232 (1984).PubMedCrossRefGoogle Scholar
  10. Glasnapp, A., Alternatives for the lactose-intolerant patient.Int. J. Pharm. Compound, 2, 412–413 (1998).Google Scholar
  11. Hinrichs, W. L. J., Prinsen. M. G., and Frijlink H. W., Inulin glasses for the stabilization of therapeutic proteins.Int. J. Pharm., 215, 163–174 (2001).PubMedCrossRefGoogle Scholar
  12. Kawashima, Y., Serigano, T., Hino, T., Yamamoto, H., and Takeuch, i H., Effect of surface morphology of carrier lactose on dry powder inhalation property of pranlukast hydrate.Int. J. Pharm., 172, 179–188 (1998).CrossRefGoogle Scholar
  13. Kawashima, Y., Serigano T., Hino T., Yamamoto H., and Takeuchi, H., Design of inhalation dry powder of pranlukast hydrate to improve dispersibility by surface modification with light anhydrous silicic acid (Aerosil® 200).Ibid., 173, 243–251 (1998).Google Scholar
  14. Keller, M. and Muller, R., Dry powder for inhalation, Inter. Patent WO, 00/28979 (2000).Google Scholar
  15. Kibbe, A. H., Handbook of Pharmaceutical excipients, 3rd Edn., New York: American Pharmaceutical Association and Phar-maceutical Press (2000).Google Scholar
  16. Larhrib, H., Zeng, X. M., Martin, G. P., Marriott, C., and Pritchard, J., The use of different grades of lactose as a carrier for aerosolized salbutamol sulfate.Int. J. Pharm., 191, 1–14 (1999).PubMedCrossRefGoogle Scholar
  17. Lehto, V. P. and Lankinen, T., Moisture transfer into medicament chambers equipped with a double barrier desiccant system.Int. J. Pharm., 275, 155–164 (2004).PubMedCrossRefGoogle Scholar
  18. Moffat, A. C., Jackson, J. V., Moss, M. S., and Widdop, B., Clarke’s isolation and identification of drugs, 2nd edition. 970–971. London: The Pharmaceutical Press, (1986).Google Scholar
  19. Nowak-Wegrzyn, A., Shapiro, G. G., Beyer, K., Bardina, L., and Sampson, H. A., Contamination of dry powder inhalers for asthma with milk proteins containing lactose.J. Allergy and Clinical Immunology, 113, 558–60 (2004).CrossRefGoogle Scholar
  20. Patton, J. S. and Platz, R. M., Pulmonary delivery of peptides and proteins for systemic action.Adv. Drug Deliv. Rev., 8, 179–228 (1992).CrossRefGoogle Scholar
  21. Sethuraman, V. V. and Hickey, A. J., Powder properties and their influence on dry powder inhaler delivery of an antitubercular drug.AAPS Pharm. Sci.Tech., 3, 1–10 (2002).CrossRefGoogle Scholar
  22. Srichana, T., Martin, G. P., and Mariott, C., Dry powder inhalers: the influence of device resistance and powder formulation on drug and lactose deposition in vitro,Eur. J. Pharm. Sci., 7, 73–80 (1998).PubMedCrossRefGoogle Scholar
  23. Staniforth, J.N., Preformulation aspects of dry powder aerosols.Drug Deliv., 5, 65–73 (1996).Google Scholar
  24. Steckel, H. and Bolzen, N., Alternative sugars as potential carriers for dry powder inhalations.Int. J. Pharm., 270, 297- 306 (2004).PubMedCrossRefGoogle Scholar
  25. Tee, S. K., Marriott, C., Zeng, X. M., and Martin, G. P., The use of different sugars as fine and coarse carriers for aerosolized salbutamol sulfate.Ibid., 208, 111–123 (2000).Google Scholar
  26. Thompson, D. C., Pharmacology of therapeutic aerosols, In Pharmaceutical inhalation aerosol technology, ed. A. J. Hickey, 155–185. New York: Marcel Dekker (1992).Google Scholar
  27. Timsina, M. P., Martin G. P., Marriott C., Ganderton D., and Yianneskis, M., Drug delivery to the respiratory tract using dry powder inhalers.Int. J. Pharm., 101, 1–13 (1994).CrossRefGoogle Scholar
  28. Vidgren, M., Karkkainen, A., Karjalainen, P., Paronen, T. P., and Nuutinen, J., Effect of powder inhaler design on drug deposition in the respiratory tract.Ibid., 42, 211–216 (1988).Google Scholar
  29. Yu, L., Amorphous pharmaceutical solids: preparation, characterization and stabilization.Adv. Drug Deliv. Rev., 48, 27–42 (2001).PubMedCrossRefGoogle Scholar
  30. Zeng, X. M., Martin, G. P., Marriott, C., and Pritchard, J., The influence of carrier morphology on drug delivery by dry powder inhalers.Int. J. Pharm., 200, 93–106 (2000).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2007

Authors and Affiliations

  • Ahmed Abd Elbary
    • 1
  • Hanan M. El-Laithy
    • 1
  • Mina I. Tadros
    • 1
  1. 1.Department of Pharmaceutics and Industrial pharmacy, Faculty of PharmacyCairo UniversityCairoEgypt

Personalised recommendations