Archives of Pharmacal Research

, Volume 16, Issue 4, pp 300–304 | Cite as

Genetic transformation ofStreptomyces caespitosus

  • Jin Cheol Yoo
  • Jung -Bo Sim
  • Sung -Jun Kim
  • Si -Wouk Kim
  • Jung -Jun Lee
Research Article


Genetic transformation ofStreptomyces caespitosus by plasmid pIj 702 was carried out. Optimal conditions for the protoplast preparation ofStreptomyces caespitosus, its regeneration, and its transformation by pIj 702 were evaluated. Addition of 2% glycine to the culture broth was optimal for protoplast yield. Formation and regeneration of protoplasts were most efficient when the mycelium were harvested at between late log and stationary growth phase. The regeneration frequency of the protoplasts was 15% when the protoplasts were regenerated on R2YE agar media containing 0.5M sucrose. Under the best condition for protoplats regeneration, the optimal transformation frequency was achieved with 40% polyethylene glycol (M.W. 4,000) treatment for 2 minutes.

Key words

Streptomyces caespitosus Protoplast Regeneration Transformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Anderson, M. M., Kibby, J. J., Richards, R. W. and Rothschild, J. M., Biosynthesis of the mitomycin antibiotics from 3-amino-5-hydroxybenzoic acid.J. Chem. Soc., Chem. Commun., 1980, 1277–1278 (1980).CrossRefGoogle Scholar
  2. Baltz, R. H., Genetic recombination inStreptomyces fradiae by protoplast fusion and cell regeneration.J. gen. Microbiol., 107, 93–102 (1978).PubMedGoogle Scholar
  3. Epp, J. K., Huber, M. L. B., Turner, J. R. and Schoner, B., Molecular cloning and expression of carbomycin biosynthetic and resistance genes fromStreptomyces thermotolerans: InProceedings of Seventh International Symposium on Biology of Actinomycetes. Japan Scientific Societies Press, Tokyo, 1988, pp. 82–85.Google Scholar
  4. Ghisalba, O., Fuhrer, H., Richter, W. J. and Moss, S., A genetic approach to the rifamycin chromophore inNocardia mediterranei: Isolation and characterization of an early aromatic ansamycin precursor containing the seven-carbon amino starter-unit and three initial acetate/propionate-units of the ansa chain.J. Antibiotics, 34, 58–71 (1981).Google Scholar
  5. Hata, T., Sano, Y., Sugawara, R., Matsumae, A., Kanamori, K., Shina, T. and Moshi, T., Mitomycin, a new antibiotic fromStreptomyces.J. Antibiotics, 9A, 141–149 (1956).Google Scholar
  6. Hopwood, D. A., Genetic studies with bacterial protoplasts.Ann. Rev. Microbiol., 35, 237–272 (1981).CrossRefGoogle Scholar
  7. Hopwood, D. A., Bibb, M. J., Chater, K. F., Kieser, T., Ward, C. J. and Schrempf, H., Genetic manipulation ofStreptomyces: A laboratory manual, The John Innes Foundation, Norwich, England, 1985.Google Scholar
  8. Horneman, U., Kehrer, J. P. and Eggert, J. H., Pyruvic acid and D-glucose as precursors in mitomycin biosynthesis byStreptomyces verticillatus.J. Chem. Soc., Chem. Commun., 1974, 1045–1046 (1974).CrossRefGoogle Scholar
  9. Katz, E., Thompson, C. J. and Hopwood, D. A. Cloning and Expression of the tyrosinase gene fromStreptomyces antibioticus inStreptomyces lividans.J. Gen. Microbiol., 129, 2703–2714 (1983).PubMedGoogle Scholar
  10. Kiser, T., Factors affecting the isolation of CCC DNA fromStreptomyces lividans andEscherichia coli.Plasmid, 12, 19–36 (1984).CrossRefGoogle Scholar
  11. Kim, C. G., Kirschning, A., Bergon, P., Ahn, Y., Wang, J. J., Shibuya, M. and Floss, H. G., 1992. Formation of 3-Amino-5-hydroxybenzoic acid, the precursor of mC7N units in ansamycin antibiotics, by a new variant of the shikimate pathway.J. Am. Chem. Soc., 114, 4941–4943 (1992).CrossRefGoogle Scholar
  12. Matsushima, P. and Baltz, R. H., Efficient plasmid transformation ofStreptomyces ambofaciens andStreptomyces fradiae protoplasts.J. Bacteriol., 163, 180–185 (1985).PubMedGoogle Scholar
  13. Nakamura, Y., Ono, E., Kohda, T. and Shinai, H., Highly targeted screening system for carbapenem antibiotics.J. Antibiot, 33, 73–83 (1988).Google Scholar
  14. Okanishi, M., Suzuki, K. and Umezawa, H., Formation and reversion ofStreptomyces protoplasts: Cultural conditions and morphological study.J. Gen. Microbiol., 80, 389–400 (1974).PubMedGoogle Scholar
  15. Pigac, J., Hranueli, D., Smokvina, T. and Alacevic, M., Optimal cultural and physiological conditions for handlingStreptomyces rimosus protoplasts.Appl. Environ. Microbiol., 44, 1178–1186 (1982).PubMedGoogle Scholar
  16. Rinehart Jr., K. L., Potgieter, M., Jin, W.-Z. Pearce C. J., Wright, A., Wright, J. L. C., Walter, J. A. and McInnes, A. G., Biosynthtic studies on antibiotics employing stable isotopes: International conference on Trends in Antibiotic Research, Tokyo, Japan, 1982, pp. 171–184.Google Scholar
  17. Shirahama, T., Furumai, T. and Okanishi, M., A modified regeneration method forStreptomyces protoplasts.Agric. Biol. Chem., 45, 1271–1273 (1981).Google Scholar
  18. Shirling, E. B. and Gottlieb, D., Methods for the characterization ofStreptomyces species.Int. J. Syst. Bacteriol., 16, 313–340 (1966).CrossRefGoogle Scholar
  19. Yoo, J. C., Hong, S. W. and Hah, Y. C., Protoplast fusion ofStreptomyces tubercidicus.Kor. J. Microbiol., 24, 364–369 (1986).Google Scholar

Copyright information

© The Pharmaceutical Society of Korea 1993

Authors and Affiliations

  • Jin Cheol Yoo
    • 1
  • Jung -Bo Sim
    • 1
  • Sung -Jun Kim
    • 2
  • Si -Wouk Kim
    • 3
  • Jung -Jun Lee
    • 4
  1. 1.Department of PharmacyChosun UniversityKwangjuKorea
  2. 2.Department of Genetic EngineeringChosun UniversityKwangjuKorea
  3. 3.Department of Environmental ScienceChosun UniversityKwangjuKorea
  4. 4.Genetic Enginneering Research InstituteKISTTaejeonKorea

Personalised recommendations