Advertisement

Archives of Pharmacal Research

, Volume 28, Issue 9, pp 1047–1052 | Cite as

The cytotoxicity of eutigosides fromEurya emarginata against HL-60 promyelocytic leukemia cells

  • Soo Yeong Park
  • Hong Chul Yang
  • Ji Young Moon
  • Nam Ho Lee
  • Se Jae Kim
  • Ji Hoon Kang
  • Young Ki Lee
  • Deok Bae Park
  • Eun Sook Yoo
  • Hee Kyoung Kang
Articles Drug Design

Abstract

Two phenolic glucosides, eutigoside B and eutigoside C were isolated from the fresh leaves ofEurya emarginata. These two phenolic glucosides exerted a significant inhibitory effect on the growth of HL-60 promyelocytic leukemia cells. Furthermore, when the HL-60 cells were treated with eutigoside C, several apoptotic characteristics such as DNA fragmentation, morphologic changes, and increase of the population of sub-G1 hypodiploid cells were observed. In order to understand the mechanism of apoptosis induction by eutigoside C, we examined the changes of Bcl-2 and Bax expression levels. The eutigoside C reduced Bcl-2 protein and mRNA levels, but slightly increased Bax protein and mRNA levels in a time-dependent manner. When we examined the activation of caspase-3, an effector of apoptosis, the eutigoside C increased the expression of active form (19-kDa) of caspase-3 and the increase of their activities was demonstrated by the cleavage of poly (ADP-ribose) polymerase, a substrate of caspase-3, to 85-kDa. The results suggest that the inhibitory effect of eutigoside C fromE. emarginata on the growth of HL-60 appears to arise from the induction of apoptosisvia the down-regulation of Bcl-2 and the activation of caspase.

Key words

Eurya emarginata HL-60 Eutigosides B Eutigoside C Apoptosis. Bcl-2 Bax Caspase-3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, N. and Mehta, K., Possible involvement of Bcl-2 pathway in retinoid X receptor alpha-induced apoptosis of HL-60 cells.Biochem. Biophys. Res. Commun., 13, 251–253 (1997).CrossRefGoogle Scholar
  2. Baff, G., Miyashita, T., Williamson, J. R., and Reed, J. C., Apoptosis induced by withdrawal of interleukin-3 (IL-3) from an IL-3-dependent hematopoietic cell line is associated with repartitioning of intracellular calcium and is blocked by enforced Bcl-2 oncoprotein production.J. Biol. Chem., 268, 6511–6519 (1993).Google Scholar
  3. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem., 72, 248–254 (1976).PubMedCrossRefGoogle Scholar
  4. Campos, L., Sabiolo, J. P., Oriol, P., Roubi, N., Vasselan, C., and Archimbaud, E., High expression of bcl-2 protein in acute myeloid leukemia cells associated with poor resonset chemotherapy.Blood, 81, 3091–3096 (1993).PubMedGoogle Scholar
  5. Carmichael, J., DeGraff, W. G., and Gazdar, A. F., Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemisensitivity testing.Cancer Res., 47, 936–942 (1987).PubMedGoogle Scholar
  6. Chung, M. G. and Epperson, B. K., Clonal and spatial genetic structure in Eurya emarginata (Theaceae).Heredity, 84, 170–177 (2000).PubMedCrossRefGoogle Scholar
  7. Distelhorst, C. W., Lam, M., and McCormick, T. S., Bcl-2 inhibits hydrogen peroxide-induced ER Ca2+ pool depletion.Oncogene, 12, 2051–2055 (1996).PubMedGoogle Scholar
  8. Fernandes-Alnemri T, Litwack G, and Alnemri E. S., CPP32, a novel human apoptotic protein with homology toCaenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta- converting enzyme.J. Biol. Chem., 269, 30761–30764 (1994).PubMedGoogle Scholar
  9. Greenwald, P., Nixon, D. W., Malone, W. F., Kelloff, G. J., Stern, H. R. and Witkin, K. M., Concepts in cancer chemoprevention research.Cancer, 65, 1483–1490 (1990).PubMedCrossRefGoogle Scholar
  10. Hanada, M., Krajewski, S., Tanaka, S., Cazaals-Hatem, D., Spengler, B. A., Ross, R. A., Biedler, J., and Reed, J. C., Regulation of Bcl-2 oncoprotein levels with differentiation of human neuroblastoma cells.Cancer Res., 53, 4978–4986 (1993).PubMedGoogle Scholar
  11. Khan, I. A., Erdelmeier, C. A., Sticher, O., and Rali, T., New phenolic glucosides from the leaves ofEurya tigang.J. Nat. Prod., 55, 1270–1274 (1992).PubMedCrossRefGoogle Scholar
  12. Kaufmann, S. H., Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin, and other cytotoxic anticancer drugs: A cautionary note.Cancer Res., 49, 5870–5878 (1989).PubMedGoogle Scholar
  13. Kohler, C., Orrenius, S., and Zhivtovaky, B., Evaluation of caspase in apoptotic cell.J. Immunol. Methods, 265, 294–298 (2002).CrossRefGoogle Scholar
  14. Meyn, R. E., Stephens, L. C., Hunter, N. R., and Milas, L., Apoptosis in murine tumors treated with chemotherapy agents.Anticancer Drugs, 6, 443–450 (1995).PubMedCrossRefGoogle Scholar
  15. Miyashita, T. and Reed, J. C., Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line.Blood, 81, 151–157 (1993).PubMedGoogle Scholar
  16. Nagata, S., Apoptosis by death factor.Cell, 88, 355–365 (1997).PubMedCrossRefGoogle Scholar
  17. Nicholson, D. W. and Thomberry, N. A., Caspase: killer proteases.Trends Biochem. Sci., 22, 199–306 (1997).CrossRefGoogle Scholar
  18. Oberhammer, F., Wilson, J. W., Dive, C., Morris, I. D., Hickman, J. A., Wakeling, A. E., Walker, P. R., and Sikorska, M., Apoptosis death in epithelial cell: cleavage of DNA to 300 and/or 50 kb fragments prior to in the absence of internucleasomal fragmentation.EMBO J., 12, 3679–3684 (1993).PubMedGoogle Scholar
  19. Oltvai, Z. N. and Korsmeyer, S. J., Bcl-2 heterodimerizesin vivo with a conserved homolog, Bax, that accelerates programmed cell death.Cell, 79, 189–192 (1994).PubMedCrossRefGoogle Scholar
  20. Park, S. Y. and Kang, H. K., Effect of exptracts of plants growing in Jeju on the growth of HL-60 cells.Cheju J. Life Sci., 3, 85–94 (2000).Google Scholar
  21. Park, S. Y., Yang, H. C., Moon, J. Y., Lee, N. H., Kim, S. J., Kang, J. H., Lee, Y. K., Park, D. B., Yoo, E. S., and Kang, H. K., Induction of the apoptosis of HL-60 promyelocytic leukemia cells byEurya emarginata.Cancer Lett., 205, 31–38 (2004).PubMedCrossRefGoogle Scholar
  22. Pezzuto, J. M., Plant-derived anticancer agents.Biochem. Pharmacol., 24, 121–133 (1997).CrossRefGoogle Scholar
  23. Sambrook, J., Fritsch, E. F., and Maniatis, T., In: Molecular Cloning Laboratory Manual (2nd ed.), Cold Spring Harbor Laboratory Press, New York, 7–8 (1989).Google Scholar
  24. Sherwood, S. W., Sheridan, J. P., and Schimke, R. T., Induction of apoptosis by the anti-tubulin drug colcemid: relationship of mitotic checkpoint control to the induction of apoptosis in HeLa S3 cells.Exp. Cell Res., 215, 373–379 (1994).PubMedCrossRefGoogle Scholar
  25. Shimizu, T. and Pommier, Y., DNA fragmentation induced by protease activation in p53-null human leukemia HL60 cells undergoing apoptosis following treatment with the topoisomerase I inhibitor Campotothecin: Cell-free system studies.Exp. Cell Res., 226, 292–301 (1996).PubMedCrossRefGoogle Scholar
  26. Sporn, M. B., Chemoprevention of cancer.Comment In Lancet, 15, 176–177 (1994).Google Scholar
  27. Wattenberg, L. W., Inhibition of carcinogenesis by minor dietary constituents.Cancer Res., 1, 2085–2091 (1992).Google Scholar
  28. Wyllie, A. H., Apoptosis and the regulation of cell numbers in normal and neoplastic tissues: an overview.Cancer Metastasis Rev., 11, 95–103 (1992).PubMedCrossRefGoogle Scholar
  29. Zou, H., Henzel, W. J., Liu, X., Lutschy, A., and Wang, X., Apaf-1 a human protein homologous toC. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3.Cell, 90, 405–413 (1997).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2005

Authors and Affiliations

  • Soo Yeong Park
    • 1
    • 3
  • Hong Chul Yang
    • 2
  • Ji Young Moon
    • 2
  • Nam Ho Lee
    • 2
  • Se Jae Kim
    • 3
  • Ji Hoon Kang
    • 1
  • Young Ki Lee
    • 1
  • Deok Bae Park
    • 1
  • Eun Sook Yoo
    • 1
  • Hee Kyoung Kang
    • 1
  1. 1.Department of MedicineCheju National UniversityJejuKorea
  2. 2.Department of ChemistryCheju National UniversityJejuKorea
  3. 3.Technology Innovation CenterCheju National UniversityJejuKorea

Personalised recommendations