Archives of Pharmacal Research

, 30:1536 | Cite as

Antinociceptive properties of extracts and two flavonoids isolated from leaves ofDanae racemosa

  • Nasrin Maleki-Dizaji
  • Fatemeh Fathiazad
  • Alireza Garjani
Article Drug efficacy and safety


The antinociceptive properties of the hydro-methanolic extract (HME) and two flavonoids isolated fromDanae racemosa have been investigated in several nociceptive rat models. The HME fromD. racemosa (100-400 mgkg-1, i.p.) produced significant dose-related inhibition of acetic acid-induced abdominal constriction. In the same dose range, the HME produced dose-related inhibition in both phases of a formalin-test. Treatment of animals with naloxone (5 mgkg-1, i.p.) completely reversed the antinociceptive effect caused by morphine (5 mgkg-1, s.c.) and the HME (200 mgkg-1, i.p.) when assessed against the first phase of the formalin-test, but this effect was less significant for the HME in the second phase. Furthermore, when assessed via a hot-plate test, the HME (100-400 mgkg-1, i.p.) caused a significant increase in response latency. The HME, given daily for to 7 consecutive days, develop tolerance, but did not induce cross-tolerance to morphine. These data demonstrate that the HME elicites pronounced anti-nociception against several pain models. The actions of the HME involve, at least in part, an interaction with the opioid system, but does not seem to be related with non-specific peripheral or central depressant actions. Finally, the active principle(s) responsible for the antinociceptive action ofD. racemosa is likely to be partially related to the presence of quercetin and kaempferol.

Key words

Danae racemosa Analgesic Opioid system Formalin test Quercetin Kaempferol 


  1. Ahmadiani, A., Hosseiny, J., Semnanian, S., Javan, M., Saeedi, F., Kamalinejad, M., and Saremi, S., Antinociceptive and anti- inflammatory effects ofElaeagnus angustifolia fruit extract.J. Ethnopharmacol., 72, 287–292 (2000).PubMedCrossRefGoogle Scholar
  2. Bailey, L. H., The Standard Cyclopedia of Horticulture, MacMillan, New York, p. 961, (1961).Google Scholar
  3. Chung, K. M., Lee, K. C., Choi, S. S., and Suh, H. W., Differential roles of spinal cholera toxin-and pertussis toxin- sensitive G proteins in nociceptive responses caused by formalin, capsaicin, and substance P in mice.Brain Res. Bull., 54, 537–542(2001).PubMedCrossRefGoogle Scholar
  4. Dubuisson, D. and Dennis, S. G., The formalin test: a quantitative study of the analgesic effects of morphine, meperidine and brainstem stimulation in rats and cats.Pain, 4,161–174(1977).PubMedCrossRefGoogle Scholar
  5. Ferreira, J., Floriani, A. E. O., Filho, V. C., Monache, F. D., Yunes, R. A., Santos, C., and Santos, A. R. S., Antinociceptive properties of the methanolic extract and two triterpenes isolated fromEpidendrum mosenii stems (Orchidaceae).Life Sci., 66,791–802(2000).PubMedCrossRefGoogle Scholar
  6. Filho, A. W., Breviglieri, E., Cechinel Filho, V., and Santos A.R.S., Antinociceptive effect of the hydroalcoholic extract ofBauhinia splendens stems in mice.J. Pharm. Pharmacol., 49,823–827(1997).Google Scholar
  7. Gallantine, F. L. and Meert, T. F., Attenuation of the gerbil writhing response by mu-, kappa- and delta-opioids, and NK- 1, -2 and -3 receptor antagonists.Brain. Res. Bull., 79, 125–135(2004).Google Scholar
  8. Ghahraman, A., The Chromophytes of Iran, 1 ed. Tehran University Publication centre, Tehran, pp. 396–405, (1994).Google Scholar
  9. Gorski, F., Correa, C. R., Cechinel Filho, V., Yunes, R. A., and Calixto, J. B., Potent antinociceptive activity of the hydroalcoholic extract fromPhyllanthus corcovadensis.J. Pharm. Pharmacol., 45,1046–1049 (1993).PubMedGoogle Scholar
  10. Hamm, R. J., Pike, B. R., O’Dell, D. M., Lyeth, B. G., and Jenkins, L. W., The rotarod test: An evaluation of its effectiveness in assessing motor deficits following traumatic brain injury.J. Neurotrauma, 11,187–196 (1994).PubMedCrossRefGoogle Scholar
  11. Heidari, M. R., Azad, E. M., and Mehrabani, M., Evaluation of the analgesic effect ofEchium amoenum Fisch & C.A. Mey. extract in mice: Possible mechanism involved.J. Ethnopharmacol., 103, 345–349 (2006).PubMedCrossRefGoogle Scholar
  12. Hunskaar, S. and Hole, K., The formalin test in mice: dissociation between inflammatory and non-inflammatory pain.Pain, 30,103–114(1987).PubMedCrossRefGoogle Scholar
  13. Hunskaar, S., Fasmer, O. B., and Hole, K., Formalin test in mice, a useful technique for evaluating mild analgesics.J. Neurosci. Methods, 14,69–76 (1985).PubMedCrossRefGoogle Scholar
  14. Koster, R., Anderson, M., and Beer, E. J., Acetic acid for analgesic screening.Fed. Proc., 18,412 (1959).Google Scholar
  15. Maleki, N., Garjani, A., Nazemiyeh, H., Nilfouroushan, N., Eftekhar Sadat, A. T., Allameh, Z., and Hasannia, N., Potent anti-Inflammatory of hydroalcoholic extract from aerial parts ofStachys Inflata on rats.J. Ethnopharmacol., 75, 213–218 (2001).PubMedCrossRefGoogle Scholar
  16. Maleki, N., Fathiazad, F., Garjani, A., and Safaii, M., Study on the anti-inflammatory and antinociceptive effects ofDanae racemosa.Inflamm. Res., 52, S119 (2003).CrossRefGoogle Scholar
  17. Malmberg, A. B. and Yaksh, T. L., Antinociceptive actions of spinal nonsteroidal anti-inflammatory agents on the formalin test in the rat.J. Pharmacol. Exp. Then, 263,136–146 (1992).Google Scholar
  18. McCarson, K. E. and Krause, J. E., The formalin-induced expression of tachykinin peptide and neurokinin receptor messenger RNAs in rat sensory ganglia and spinal cord is modulated by opiate preadministration.Neurosci., 64, 729–739(1995).CrossRefGoogle Scholar
  19. McGaraughty, S., Honore, P., Wismer, C. T., Mikusa, J., Zhu, C. Z., McDonald, H. A., Bianchi, B., Faltynek, C. R., and Jarvis, M. F, Endogenous opioid mechanisms partially mediate P2X3/P2X2/3-related antinociception in rat models of inflammatory and chemogenic pain but not neuropathic pain.Br. J. Pharmacol., 146,180–188 (2005).PubMedCrossRefGoogle Scholar
  20. Nasudari, A. A., Oganesyan, E. T., Kompantsev, V. A., and Kerimov, Y B., Polyphenol compounds fromDanae racemosa.Him. Prir. Soedin., 5, 674 (1972).Google Scholar
  21. Parsa, A., Flore de l’Iran, Ministry of Education, Tehran pp.382–385(1950).Google Scholar
  22. Tjølsen, A., Berge, O. G., Hunskaar, S., Roseland, J. H., and Hole, K., The formalin test: an evaluation of the method.Pain, 51, 5–17 (1992).PubMedCrossRefGoogle Scholar
  23. Vaz, Z. R., Filho, A. W., Yunes, R. A., and Calixto, J. B., Antinociceptive action of 2-(4-bromobenzoyl)-3-methyl-4,6- dimethoxy benzofuran, a novel xanthoxyline derivative on chemical and thermal models of nociception in mice.J. Pharmacol. Exp. Ther., 278,304–312 (1996).PubMedGoogle Scholar
  24. Vyklicky, L., Advances in pain research and therapy. Vol.3, eds. By Bonica J.J., Liebeskind J.C., Albe-Fessard D.G., Raven, New York, pp. 727–745 (1979).Google Scholar
  25. Yaksh, T. L. and Rudy, T. A., Studies on the direct spinal action of narcotics in the production of analgesia in the rat.J. Pharmacol. Exp. Then, 202,411–428 (1977).Google Scholar

Copyright information

© The Pharmaceutical Society of Korea 2007

Authors and Affiliations

  • Nasrin Maleki-Dizaji
    • 2
  • Fatemeh Fathiazad
    • 1
  • Alireza Garjani
    • 2
  1. 1.Department of Pharmacognosy, Faculty of PharmacyTabriz University of Medical SciencesTabrizIran
  2. 2.Department of Pharmacology, Faculty of PharmacyTabriz University of Medical SciencesTabrizIran

Personalised recommendations