Archives of Pharmacal Research

, Volume 25, Issue 6, pp 759–769 | Cite as

Chemistry and biology of ras farnesyltransferase

  • Kwang -Nym Cho
  • Kee -In Lee
Research Article Review


Mutated forms of ras are found in many human tumors and the rate of incidence is significantly higher in colon and pancreatic cancers. The protein product from theras oncogene is a small G-protein, p21ras(Ras) that is known to play a key role in the signal transduction cascade and cell differentiation and proliferation. Mutated Ras is unable to regulate itself and remains constantly activated, leading to uncontrolled cell growth. The function of Ras in signal transduction requires its location near the growth factor receptor at the cell membrane. However, Ras does not have a transmembrane domain. Ras requires farnesylation to increase its hydrophobicity and subsequent plasma membrane association for its transforming activity. This key post-translational modification is catalyzed by the enzyme Ras farnesyltransferase (FTase), which transfers a farnesyl group from famesylpyrophosphate to theC-terminal cysteine of the Ras protein. The requirement has focused attention on FTase as a target for therapeutic intervention. Selective inhibition of FTase will prevent Ras protein from association with the plasma membrane, leading to a disruption of oncogenic Ras function.

Key words

ras Oncogene Ras Signal transduction cascade Ras Farnesyltransferase CAAX motif Peptidomimetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbacid, M., Ras gene.Annu. Rev. Biochem., 56, 779–827 (1987).PubMedCrossRefGoogle Scholar
  2. Barinaga, M., From bench top to bedside.Science, 278, 1036–1039 (1997).PubMedCrossRefGoogle Scholar
  3. Bolton, G. L., Sebolt-Leopold, J. S. and Hodges, J. C., In Bristol, J. A. (Ed.),Annual reports in Medicinal Chemistry, vol. 29, Academic Press, New York, pp165–174, (1994).Google Scholar
  4. Bos, J. L., Ras Oncogenes in human cancer.Cancer Res., 49, 4682–4689 (1989).PubMedGoogle Scholar
  5. Brown, M. S., Goldstein, J. L., Paris, K. J., Burnier, J. P. and Marsters, J. J., Tetrapeptide inhibitors of protein farnesy-Itransferase: Amino-terminal substitution in phenylalanine-containing tetrapeptides restores farnesylation.Proc. Natl. Acad.Sci. USA, 89, 8313–8316 (1992).PubMedCrossRefGoogle Scholar
  6. Burn, C. J., Guitton, J.-D., Baudoin, B., Lelievre, Y., Duchesne, M., Parker, F., Fromage, N. and Commercon, A., Novel conformationally extended naphthalene-based inhibitors of farnesyltransferase.J. Med. Chem., 40, 1763–1767 (1997).CrossRefGoogle Scholar
  7. Buss, J. E. and Marsters, J. C., Jr., Farnesyl transferase inhibitors: The successes and surprises of new class of potential cancer chemotherapeutics.Chemistry & Biology, 2, 787–791 (1995).CrossRefGoogle Scholar
  8. Cadena, D. L. and Gill, G. N., Receptor tyrosine kinases.FASEB J., 6, 2332–2337 (1992).PubMedGoogle Scholar
  9. Casey, P. J., Biochemistry of protein prenylation.J. Lipid Res., 33, 1731–1740 (1992).PubMedGoogle Scholar
  10. Casey, P. J. and Seabra, M. C., Protein prenyltransferases.J. Biol. Chem., 271, 5289–5292 (1996).PubMedCrossRefGoogle Scholar
  11. Casey, P. J., Solski, P. A., Der, C. J. and Buss, J. E., p21 Ras is modified by a farnesyl isoprenoid.Proc. Natl. Acad. Sci. USA, 86, 8323–8327 (1989).PubMedCrossRefGoogle Scholar
  12. Clerc, F.-F., Guitton, J.-D., Fromage, N., Lelievre, Y., Duchesne, M., Tocque, B., James-Surcouf, E., Commercon, A. and Becquart, J., Constrained analogues of kcvfmwith improved inhibitory properties against farnesyltransferase.Bioorg. Med.Chem., 5, 1779–1784 (1995).CrossRefGoogle Scholar
  13. Cox, A. D. and Der, C. J., Farnesyltransferase inhibitors and cancer treatment: Targeting simply Ras?.Biochim. Biophy. Acta., 1333, F51-F71 (1997).Google Scholar
  14. Der, C. J. and Cox, A. D., Isoprenoid modification and plasma membrane association: critical factors for ras oncogenicity.Cancer Cells, 3, 331–340 (1991).PubMedGoogle Scholar
  15. Dolence, J. M. and Poulter, C. D., A mechanism for posttranslational modifications of proteins by yeast protein farnesyltransferase.Proc. Natl. Acad. Sci. USA, 92, 5008–5011 (1995).PubMedCrossRefGoogle Scholar
  16. Dunten, P., Kammlott, U., Crowther, R., Weber, D., Palermo, R. and Birktoft, J., Protein farnesyltransferase: Structure and implications for substrate binding.Biochemistry, 37, 7907–7912 (1998).PubMedCrossRefGoogle Scholar
  17. Edelstein, R. L., Weller, V. A. and Distefano, M. D., Stereo-chemical analysis of the reaction catalyzed by yeast protein farnesyltransferase.J. Org. Chem., 63, 5298–5299 (1998).CrossRefGoogle Scholar
  18. Fearon, E. R., Human cancer syndromes.Science, 278, 1043–1050 (1997).PubMedCrossRefGoogle Scholar
  19. Fu, H.-W., Beese, L. S. and Casey, P. J., Kinetic analysis of zinc ligand mutants of mammalian protein farnesyltransferase.Biochemistry, 37, 4465–4472 (1998).PubMedCrossRefGoogle Scholar
  20. Gibbs, J. B., Graham, S. L., Hartman, G. D., Koblan, K. S., Kohl, N. E., Omer, C. A. and Oliff, A., Farnesyltransferase inhibitors versus Ras inhibitors.Curr. Opin. Chem. Biol., 1, 197–203 (1997).PubMedCrossRefGoogle Scholar
  21. Grand, R. J. A. and Owen D., The biochemistry of ras p21.Biochem. J., 279, 609–631 (1991).PubMedGoogle Scholar
  22. Gutierrez, L., Magee, A. I., Marshall, C. J. and Hancock, J. F., Post-translational processing of p21 ras is two-step and involves carboxyl-methylation and carboxyterminal proteolysis.EMBO J., 8, 1093–1098 (1989).PubMedGoogle Scholar
  23. Hamilton, A. D. and Sebti, S. M., Inhibitors of Ras farnesyltransferase as novel antitumor agents.Drug News Perspect., 8, 138–145 (1995).Google Scholar
  24. Hancock, J. F., Magee, A. I., Childs, J. E. and Marshall, C. J., All ras proteins are polyisoprenylated but only some are palmitoylated.Cell, 57, 1167–1177 (1989).PubMedCrossRefGoogle Scholar
  25. Heldin, C.-H. and Westermark B., Signal transduction by the receptors for plateleWerived growth factor.J. Cell Sci., 96, 193–196 (1990).PubMedGoogle Scholar
  26. Hightower, K. E. and Fierke, C. A., Zinc-catalyzed sulfur alkylation: Insights from protein farnesyltransferase..Curr. Opin. Chem. Biol., 3, 176–181 (1999).PubMedCrossRefGoogle Scholar
  27. Hightower, K. E., Huang, C.-C., Casey, R J. and Fierke, C. A., H-Ras peptide and protein substrates bind protein farnesyltransferase as an ionized thiolate.Biochemistry, 37, 15555–15562 (1998).PubMedCrossRefGoogle Scholar
  28. Hinterding, K., Alonso-Diaz, D. and Waldmann, H., Organic synthesis and biological signal transduction.Angew. Chem. Int. Ed. Engl., 37, 688–749 (1998).CrossRefGoogle Scholar
  29. Hunt, J. T., Lee, Y. G., Leftheris, K., Seizinger, B., Carboni, J., Mabus, J., Ricca, C., Yan, N. and Manne, V., Potent, cell active, non-thiol tetrapeptide inhibitors offarnesyltransferase.J. Med. Chem., 39, 353–358 (1996).PubMedCrossRefGoogle Scholar
  30. Kobran, K. S., Culberson, J. C., Desolms, S. J., Giuliani, E. A., Mosser, S. D., Omer, CA., Pitzenberger, S. M. and Bogusky, M. J., NMR studies of novel inhibitors bound to farnesyl protein transferase.Protein Sci., 4, 681–688 (1995).Google Scholar
  31. Krengel, U., Schlichting, I., Scherer, A., Schumann, R., French, M., John, J., Kabsch, W., Pai, E. F. and Wittinghofer, A., Three-dimensional structures of H-ras p21 mutants: Molecular basis for their inability to function as signal switch molecules.Cell, 62, 539–548 (1990).PubMedCrossRefGoogle Scholar
  32. Leonard, D. M., Ras farnesyltransferase: A new therapeutic target.J. Med. Chem., 40, 2971–2990 (1997).PubMedCrossRefGoogle Scholar
  33. Leonard, D. M., Shuler, K. R., Poulter, C. J., Eaton, S. R., Sawyer, T. K., Hodges, J. C., Su, T.-Z., Scholten, J. D., Gowan, R. C., Sebolt-Leopold, J. S. and Doherty, A. M., Structure-activity relationships of cysteine-locking pentapeptide derivatives that inhibit ras farnesyltransferase.J. Med. Chem., 40, 192–200 (1997).PubMedCrossRefGoogle Scholar
  34. Long, S. B. and Casey, P. J., Cocrystal structure of protein farnesyltransferase complexed with a farnesyl diphosphate substrate.Biochemistry, 37, 9612–9618 (1998).PubMedCrossRefGoogle Scholar
  35. Lowy, D. R. and Willumsen, B. M., Function and regulation of Ras.Annu. Rev. Biochem., 62, 851–891 (1993).PubMedCrossRefGoogle Scholar
  36. Maignan, S., Guilloteau, J.-P., Fromage, N., Arnoux, B., Becquart, J. and Ducruix, A., Crystal structure of the mammalian Grb2 adaptor.Science, 268, 291–293 (1995).PubMedCrossRefGoogle Scholar
  37. Masrers, J. C., Jr., McDowell, R. S., Reynilds, M. E., Oare, D. A., Somers, T. C., Stanley, M. S., Rawson, T. E., Struble, M. E., Burdick, D. J., Chan, K. S., Duarte, C. M., Paris, K. J., Tom, J. Y., Wan, D. T., Xue, Y. and Burnier, J. P., Benzodiazepine peptidomimetic inhibitors of farnesylferase.Bioorg. Med. Chem., 2, 949–957 (1994).CrossRefGoogle Scholar
  38. Matthews, R. G. and Goulding, C. W., Enzyme-catalyzed methyl transfers to thiols: Therole of zinc.Curr. Opin. Chem. Biol., 1, 332–339 (1997).PubMedCrossRefGoogle Scholar
  39. McCormick, F., Ras GTPase activating protein: Signal transmitter and signalterminator.Cell, 56, 5–8 (1989).PubMedCrossRefGoogle Scholar
  40. McCormick, F., How receptors turn Ras on.Nature, 363, 15–16 (1993).PubMedCrossRefGoogle Scholar
  41. McCormick, F., Raf: The holy grail of Ras biology?.Trends Cell Biol., 1994, 4, 347–350 (1994).CrossRefGoogle Scholar
  42. Moodie, S. A. and Wolfman, A., The 3Rs of life: Ras, Raf and Growth regulation.TIG, 10, 44–48 (1994).PubMedGoogle Scholar
  43. Mu, Y., Omer, C. A. and Gibbs, R. A., On the stereochemical course of human protein farnesyltransferaes.J. Am. Chem. Soc., 118, 1817–1823 (1996).CrossRefGoogle Scholar
  44. Pai, E. F., Krengel, U., Gregoty, A. P., Goody, R. S., Kabsch, W. and Wittinghofer, A., Refiend crystal Structure of the triphosphate conformation of H-ras p21 at 1.35 Aresolution: Implications for the mechanism of GTP hydrolysis.EMBO J., 9, 2351–2359 (1990).PubMedGoogle Scholar
  45. Park, H.-W. and Beese, L. S., Protein farnesyltransferase.Curr. Opin. Struct. Biol., 7, 873–880 (1997).PubMedCrossRefGoogle Scholar
  46. Park, H.-W., Boduluri, S. R., Moornaw, J. P., Casey, P. J. and Beese, L. S., Crystal structure of protein farnesyltransferase at 2.25 angstrom resolution.Science, 275, 1800–1805 (1997).PubMedCrossRefGoogle Scholar
  47. Patel, D. V., Gordon, E. M., Schmidt, R. J., Weller, H. N., Young, M. G., Zahler, R., Barbacid, M., Carboni, J. M., Gullo-Brown, J. L., Huniham, L., Ricca, C., Robinson, S., Seizinger, B. R., Tuomari, A. V. and Mann, V., Phosphinyl acid-based bisubstrate analog inhibitors of Ras farnesyl protein transferase.J. Med. Chem., 38, 435–42 (1995).PubMedCrossRefGoogle Scholar
  48. Pawson, T. and Schlessinger, J., SH2 and SH3 domains.J. Curr. Biol. 3, 434–442 (1993).CrossRefGoogle Scholar
  49. Reiss, Y., Brown, M. S. and Goldstein, J. L., Divalent cation and prenyl pyrophosphate specificities of the protein farnesyl-transferase from rat brain, a zinc metalloenzyme.J. Biol. Chem., 267, 6403–6408 (1992).PubMedGoogle Scholar
  50. Reiss, Y., Goldstein, J. L., Seabra, M. C., Casey, P. J. and Brown, M. S., Inhibition of purified p21 ras farnesyl protein transferase by Cys-AAX tetrapeptide.Cell, 62, 81–88 (1990).PubMedCrossRefGoogle Scholar
  51. Strickland, C. L., Windsor, W. T., Syto, R., Wang, L., Bond, R., Wu, Z., Schwartz, J., Le, H. V., Beese, L. S. and Weber, P. C., Crystal structure of farnesyl protein transferase complexed with a CaaX peptide and farnesyl diphosphate analogue.Biochemistry, 37, 16601–16611 (1998).PubMedCrossRefGoogle Scholar
  52. Weller, V. A. and Distefano, M. D., Measurement of the α-Secondary kinetic isotope effect for a prenyltransferase by MALDI mass spectrometry.J. Am. Chem. Soc., 120, 7975–7976 (1998).CrossRefGoogle Scholar
  53. Willumsen, B. M., Christensen, A., Hubert, N. L., Papageorge, A. G. and Lowy, D. R., The p2.ras C-terminus is required for transformation and membrane association.Nature, 310, 583–586 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2002

Authors and Affiliations

  1. 1.Bio-Organic Science DivisionKorea Research Institute of Chemical TechnologyYusongKorea

Personalised recommendations