Archives of Pharmacal Research

, Volume 26, Issue 2, pp 173–181 | Cite as

A polymeric micellar carrier for the solubilization of biphenyl dimethyl dicarboxylate

  • Chi Sang-Cheol
  • Yeom Dae-II
  • Kim Sung-Chul
  • Park Eun-Seok
Research Articles Articles


A polymeric micelle drug delivery system was developed to enhance the solubility of poorly-water soluble drug, biphenyl dimethyl dicarboxylate, DDB. The block copolymers consisting of polyp,L-lactide) (PLA) as the hydrophobic segment and methoxy poly(ethylene glycol) (mPEG) as the hydrophilic segment were synthesized and characterized by NMR, DSC and MALDI-TOF mass spectroscopy. The size of the polymeric micelles measured by dynamic light scattering showed a narrow monodisperse size distribution with the average diameter less than 50 nm. The MW of mPEG-PLA, 3000 (MW of mPEG, 2 K; MW of PLA, 1 K), and the presence of hydrophilic and hydrophobic segments on the polymeric micelles were confirmed by MALDI-TOF mass spectroscopy and NMR, respectively. Polymeric micelle solutions of DDB were prepared by three different methods, i.e. the matrix method, emulsion method and dialysis method. In the matrix method, DDB solubility was reached to 13.29 mg/mL. The mPEG-PLA 2K-1K micelle system was compared with the poloxamer 407 micelle system for their critical micelle concentration, micelle size, solubilizing capacity, stability in dilution and physical state. DDB loaded-polymeric micelles prepared by the matrix method showed a significantly increased aqueous solubility (>5000 fold over intrinsic solubility) and were found to be superior to the poloxamer 407 micelles as a drug carrier.

Key words

Polymeric micelles Biphenyl dimethyl dicarboxylate DDB Polylactide Methoxy poly(ethylene glycol) mPEG-PLA Block copolymer Solubilization Poloxamer 407 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexandridis, P. and Hatton, T. A., Poly(ethylene oxide)-poly (propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 96, 1–46 (1995).CrossRefGoogle Scholar
  2. Gu, S. J., Gao, W. W., Qiao, P. X., Wang, A. G., and Qiang, Z. Y., The dissolution rate and physical dispersion state of preparation of biphenyl dimethyl dicarboxylate.Yao Hsueh Hsueh Pao, 24(11), 859–864 (1989).PubMedGoogle Scholar
  3. Hyun, J. and Chun, I. K., Dissolution characteristics of biphenyl dimethyl dicarboxylate from solid dispersions and permeation through rabbit duodenal mucosa.J. Kor. Pharm. Sci., 24(2), 57–65 (1994).Google Scholar
  4. Kataoka, K., Kwon, G. S., Yokoyama, M., Okano, T., and Sakurai, Y., Block copolymer micelles as vehicles for drug delivery.J. Control Rel., 24, 119–132 (1993).CrossRefGoogle Scholar
  5. Kwon, G. S., Naito, M., Kataoka, K., and Yokoyama, M., Block copolymer micelles as vehicles for hydrophobic drugs.Colloids and Surfaces B; Biointerfaces, 2, 429–434 (1994).CrossRefGoogle Scholar
  6. Kwon, G., Naito, M., Yokoyama, M., Okano, T., Sakurai, Y., and Kataoka, K., Micelles based on AB block copolymers of poly (ethylene oxide)-poly(-benzyl-L-aspartate).Langmuir, 9(4), 945–949 (1993).CrossRefGoogle Scholar
  7. Kwon, G. S., Suwa, S., Yokoyama, M., Okano, T., Sakurai, Y., and Kataoka, K., Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly(ethylene oxide-aspartate) block copolymer-adriamycin conjugate.J. Control Rel., 29, 17–23 (1994).CrossRefGoogle Scholar
  8. La, S. B., Okano, T., and Kataoka, K., Precipitation and characterization of the micelle-forming polymeric drug indomethacin-incorporated polyethylene oxide)-poly(-benzyl-L-aspatate) block copolymer micelles.J. Pharm. Sci., 85(1), 85–90 (1996).PubMedCrossRefGoogle Scholar
  9. Moon, J. O., Jung, K. W., Kim, S. H., Kim, N. D., Lee, S. K., Yang, H. S., and Lee, C. H., Effect of water soluble DDB derivative on the carbon tetrachloride induced hepatotoxicity in rats.J. Kor. Pharm. Sci., 27(3), 173–205 (1997).Google Scholar
  10. Nagarajan, R. and Ganesh, K., Comparison of solubilization of hydrocarbons in (PEO-PPO) diblock versus (PEO-PPO-PEO) triblock copolymer micelles.J. Colloid Interf. Sci., 184, 489–499 (1996).CrossRefGoogle Scholar
  11. Nivaggioli, T., Tsao, B., Alexandridis, P., and Hatton, T. A., Microviscosity in Pluronic and tetronic poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles.Langmuir, 11(1), 119–126 (1995).CrossRefGoogle Scholar
  12. Pispas, S. and Hadjichristidis, N., Micellization of model graft copolymers of the H and type in dilute solution.Macromolecules, 29, 7378–7385 (1996).CrossRefGoogle Scholar
  13. Quintana, J. R., Salazar, R. A., and Katime, I., Micelle formation and polyisobutylene solubilization by polystyrene-block-poly (ethylene-co-butylene)-block-polystyrene block copolymers.Macromol. Chem. Phys., 196, 1625–1634 (1995).CrossRefGoogle Scholar
  14. Reed, A. M. and Gilding, D. K., Biodegradable polymers for use in surgery-poly(glycolic acid)/poly(lactic acid) homo and copolymers: 2.In vitro degradation.Polymer, 22, 494–498 (1981).Google Scholar
  15. Scholz, C., Iijima, M., Nagasaki, Y., and Kataoka, K., A novel reactive polymeric micelle with aldehyde group on its surface.Macromolecules, 28, 7295–7297 (1995).CrossRefGoogle Scholar
  16. Xu, R. and Winnik, M. A., Micellization of polystyrene-poly (ethylene oxide) block copolymers in water. 5. A test of the star and mean-field models.Macromolecules, 25, 644–652 (1992).CrossRefGoogle Scholar
  17. Yokoyama, M., Block copolymers as drug carriers.Critical Reviews in Therapeutic Drug Carrier System, 9(3,4), 213–248 (1992).Google Scholar
  18. Yokoyama, M., Okano, T., Sakurai, Y., Suwa, S., and Kataoka, K., Introduction of cisplatin into polymeric micelle.J. Control. Rel., 39, 351–356 (1996).CrossRefGoogle Scholar
  19. Zhang, X., Jackson, J. K., and Burt, H. M., Development of amphiphilic diblock copolymers as micellar carrier of taxol.Int. J. Pharm., 132,195–206 (1996).CrossRefGoogle Scholar
  20. Zhu, K. J., Xiangzhou, L., and Shilin, Y., Preparation, characterization, and properties of polylactide(PLA)-poly(ethylene glycol)(PEG) copolymers: A potential drug carrier.J. App. Polymer Sci., 39, 1–9 (1990).CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2003

Authors and Affiliations

  • Chi Sang-Cheol
    • 1
  • Yeom Dae-II
    • 1
  • Kim Sung-Chul
    • 1
    • 2
  • Park Eun-Seok
    • 1
  1. 1.Sungkyunkwan UniversitySuwon, Kyonggi-DoKorea
  2. 2.Samyang Pharmaceuticals R&D, Samyang CorporationTaejeonKorea

Personalised recommendations