Advertisement

Achiral and chiral determination of benzophenanthridine alkaloids from methanol extracts ofhylomecon species by high performance liquid chromatography

  • Kang Jong Seong
  • Long Pham Hoai
  • Lim Hwan Mi
  • Kim Young Ho
  • Blaschke Gottfried
Research Articles Articles

Abstract

A high performance liquid chromatographic (HPLC) method was developed for the qualitative and quantitative determination of benzophenanthridine alkaloids from the methanol extracts ofHylomecon hylomeconoides andH. vernale (Papaveraceae). Achiral and chiral methods were adapted for the separation of 6-methoxydihydrosanguinarine (1), 6-acetonyldihydrosanguinarine (2) and dihydrosanguinarine (3). The achiral reversed phase HPLC method made it possible the simultaneous separation and determination of1, 2 and3 within 20 min on ODS column using acetonitrile-phosphate buffer (50 mM, pH 7.0) (50 : 50, v/v). The separation and determination of1 and2 enantiomers was available using chiral columns. The same amount of (+) and (-)-enantiomers of1 was found from the methanol extract of specimen, indicated that 1 could be the artifact produced by the reaction of sanguinarine with methanol.H. hylomeconoides showed higher level of1 and3 in compared withH. vernale, especially in root samples permitting the possibility of chemical discrimination between two species.

Key words

Benzophenanthridine alkaloids Hylomecon species Enantiomers Chiral separation HPLC 

References

  1. Chaturvedi, M. M., Kumar, A., Damay, B. G., Chainy, G. B. N., Agarwal, S., and Aggarwal, B. B., Sanguinarine (pseudochelerythrine) is a potent inhibitor of NF-kB activation, lkBα phosphorylation, and degradation.J. Biol. Chem., 272(48), 30129–30134 (1997).PubMedCrossRefGoogle Scholar
  2. Cho, Y. S., Phytochemical constituents ofHylomecon hylomeconoides and their activities on neurotransmitter-metabolizing enzymes. Thesis: Chungnam National University (2001).Google Scholar
  3. Dostal, J., Bochorakova, H., Taborska, E., Slavik, J., Potacek, M., Budesinsky, M., and de Hoffmann, E., Structure of sanguinarine base.J. Nat. Prod., 59(6), 599–602 (1996).CrossRefGoogle Scholar
  4. Dostal, J., Marek, R., Slavik, J., Taborska, E., Potacek, M., and Sklenar, V., Sanguinarine pseudobase: re-examination of NMR assignments using gradient-enhanced spectroscopy.Mag. Res. Chem., 36(11), 869–872 (1998).CrossRefGoogle Scholar
  5. Fabre, N., Claparols, C., Richelme, S., Angelin, M. L., Fouraste, I., and Moulis, C., Direct characterization of isoquinoline alkaloids in a crude plant extract by ion-pair liquid chromatography-electrospray ionization tandem mass spectrometry: example ofEschscholtzia californica.J. Chromatogr. A., 904(1), 3546 (2000).CrossRefGoogle Scholar
  6. Fletcher, M. T., Takken, G., Blaney, B. J., and Alberts, V., Isoquinoline alkaloids and keto-fatty acids ofArgemone ochroleuca and A. mexicana (Mexican poppy) seed. I. An assay method and factors affecting their concentration.Aust. J. Agric. Res., 44(2), 265–275 (1993).CrossRefGoogle Scholar
  7. Hiller, K. O., Ghorbani, M., and Schilcher, H., Antispasmodic and relaxant activity of chelidonine, protopine, coptisine, andChelidonium majus extracts on isolated guinea-pig ileum.Planta Med., 64(8), 758–760 (1998).PubMedCrossRefGoogle Scholar
  8. Husain, S., Narsimha, R., and Rao, R. N., Separation, identification and determination of sanguinarine in argemone and other adulterated edible oils by reversed-phase high-performance liquid chromatography.J. Chromatogr. A, 863(1), 123–126 (1999).PubMedCrossRefGoogle Scholar
  9. Itokawa, H., Ikuta, A., Tsutsui, N., and Ishiguro, I., Alkaloids and a sterol fromChelidonium japonicum.Phytochem., 17(4), 839–840 (1978).CrossRefGoogle Scholar
  10. Konda, Y., Harigaya, Y., and Onda, M., Studies on the constituents ofBocconia cordata. III. Structure elucidation of bocconine by means of nuclear magnetic resonance spectroscopic studies.J. Heterocyclic Chem., 23(3), 877–879 (1986).CrossRefGoogle Scholar
  11. Kraml, M. M. and DiCosmo, F., A rapid high-performance liquid chromatographic method for the separation of the alkaloid precursor L-tyrosine and six tetrahydroisoquinoline alkaloids ofPapaver somniferum.Phytochem. Anal., 4(3), 103–104 (1993).CrossRefGoogle Scholar
  12. Lee, Y. N.,Flora of Korea, Kyohaksa, Seoul, pp. 237–238 (1996).Google Scholar
  13. Lenfeld, J., Kroutil, M., Marsalek, E., Slavik, J., Preininger, V., and Simanek, V., Antiinflammatory activity of quaternary benzophenanthridine alkaloids fromChelidonium majus.Planta Med., 43(2), 161–165 (1981).CrossRefGoogle Scholar
  14. Marek, R., Tousek, J., Kralik, L., Dostal, J., and Sklenar, V., Conformational study of C2 symmetrical benzo[c]phenanthridine alkaloid derivatives.Chem. Lett., 4, 369–370 (1997).CrossRefGoogle Scholar
  15. Mitscher, L. A., Park, Y. H., Clark, D., and Clark, G. W., Hammesfahr, P. D., Wu, W. N., Beal, J. L., Antimicrobial agents from higher plants. An investigation ofHunnemannia fumariaefolia pseudoalcoholates of sanguinarine and chelerythrine.Lloydia, 41(2), 145–150 (1978).PubMedGoogle Scholar
  16. Mizuno, M., Kojima, H., Tanaka, T., Linuma, M., Zhi-Da, M., and Murata, H., Benzophenanthridine alkaloids from the seeds ofCoptisjaponica var. dissecta.J. Nat. Prod., 50(2), 326 (1987).CrossRefGoogle Scholar
  17. Nakanishi, T., Suzuki, M., Saimoto, A., and Kabasawa, T., Structural considerations of NK109, an antitumor benzo[c] phenanthridine alkaloid.J. Nat. Prod., 62(6), 864–867 (1999).PubMedCrossRefGoogle Scholar
  18. Oechslin, S. M., Konig, G. M., Oechslin-Merkel, K., Wright, A. D., Kinghorn, A. D., Sticher, O., and Miyagawa, M., An NMR study of four benzophenanthridine alkaloids.J. Nat. Prod., 54(2), 519–524(1991).CrossRefGoogle Scholar
  19. Pothier, J., Galand, N., Tivollier, P., and Viel, C., Separation of quaternary alkaloids in plant extracts by overpressured layer chromatography.J. Planar Chromatogr., 6(3), 220–222 (1993).Google Scholar
  20. Schmeller, T., Latz-Bruning, B., and Wink, M., Biochemical activities of berberine, palmatine and sanguinarine mediating chemical defence against microorganisms and herbivores.Phytochem., 44(2), 257–266 (1997).CrossRefGoogle Scholar
  21. Schumacher, H. M. and Zenk, M. H., Partial purification and characterization of dihydrobenzophenanthridine oxidase fromEschscholzia californica cell suspension cultures.Plant Cell Reports, 7(1), 43–46 (1988).CrossRefGoogle Scholar
  22. Sevcik, J., Vicar, J., Ulrichova, J., Valka, I., Lemr, K., and Simanek, V., Capillary electrophoretic determination of sanguinarine and chelerythrine in plant extracts and pharmaceutical preparations.J. Chromatogr. A, 866(2), 293–298 (2000).PubMedCrossRefGoogle Scholar
  23. Suresh, K. G., Das, A., and Maiti, M., Photochemical conversion of sanguinarine to oxysanguinarine.J. Photochem. Photobiol. A, 111(1–3), 51–56 (1997).CrossRefGoogle Scholar
  24. Tome, F., Colombo, M. L., and Caldiroli, L., A comparative investigation on alkaloid composition in different populations ofEschscholtzia californica Cham.Phytochem. Anal., 10(5), 264–267 (1999).CrossRefGoogle Scholar
  25. Williams, R. D. and Ellis, B. E., Alkaloids fromAgrobacterium rhizogenes-transformed Papaver somniferum cultures.Phytochem., 40(1), 719–723 (1995).Google Scholar
  26. Zhang, G. L., Rucker, G., Breitmaier, E., Nieger, M., Mayer, R., and Steinbeck, C., Alkaloids fromDactylicapnos torulosa.Phytochem., 32(3), 299–305 (1993).Google Scholar

Copyright information

© The Pharmaceutical Society of Korea 2003

Authors and Affiliations

  • Kang Jong Seong
    • 1
  • Long Pham Hoai
    • 1
  • Lim Hwan Mi
    • 1
  • Kim Young Ho
    • 1
  • Blaschke Gottfried
    • 2
  1. 1.College of PharmacyChungnam National UniversityKorea
  2. 2.Institute for Pharmaceutical ChemistryUniversity of MuensterMuensterGermany

Personalised recommendations