Archives of Pharmacal Research

, Volume 18, Issue 1, pp 12–17 | Cite as

Functional expressions of endogenous dipeptide transporter and exogenous proton/peptide cotransporter inXenopus oocytes

  • Doo-Man Oh
  • Gordon L. Amidon
  • Wolfgang Sadee
Research Articles


It is essential to clone the peptide transporter in order to obtain better understanding of its molecular structure, regulation, and substrate specificity. Characteristics of an endogenous peptide transporter in oocytes were studied along with expression of an exogenous proton/peptide cotransporter from rabbit intestine. And further efforts toward cloning the transporter were performed. The presence of an endogenous peptide transporter was detected inXenopus laevis oocytes by measuring the uptake of 0.25 μM (10Ci/ml) [3H]-glycylsarcosine (Gly-Sar) at pH 5.5 with or without inhibitors. Uptake of Gly-Sar in oocytes was significantly inhibited by 25 mM Ala-Ala, Gly-Gly, and Gly-Sar (p<0.05), but not by 2.5 mM of Glu-Glu, Ala-Ala, Gly-Gly, Gly-Sar and 25 mM glycine and sarcosine. This result suggests that a selective transporter is involved in the endogenous uptake of dipeptides. Collagenase treatment of oocytes used to strip oocytes from ovarian follicles did not affect the Gly-Sar uptake. Changing pH from 5.5 to 7.5 did not affect the Gly-Sar uptake significantly, suggesting no dependence of the endogenous transporter on a transmembrane proton gradient. An exogenous H+/peptide cotransporter was expressed after microinjection of polyadenylated messenger ribonucleic acid [poly(A)+-mRNA] obtained from rabbit small intestine. The Gly-Sar uptake in mRNA-injected oocytes was 9 times higher than that in water-injected oocytes. Thus, frog oocytes can be utilized for expression cloning of the genes encoding intestinal H+/peptide cotransporters. Size fractionation of mRNA was successfully obtained using this technique.

Key words

Cotransporter Dipeptide Expression Glycylsarcosine Oocytes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Banks, W. A., Kastin, A. J., Michals, E. A., and Barrera, C. M., Stereospecific transport of Tyr-MIF-1 across the blood-brain barrier by peptide transport system-1.Brain Res. Bull., 25, 589–592 (1990).PubMedCrossRefGoogle Scholar
  2. Chomcyznski, P. and Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.Anal. Biochem., 162, 156–159 (1987).Google Scholar
  3. Friedman, D. I. and Amidon, G. L., Passive and carrier-mediated intestinal absorption components of two angiotensin converting enzyme (ACE) inhibitor prodrugs in rats: Enalapril and fosinopril.Pharm. Res., 6, 1043–1047 (1989a).PubMedCrossRefGoogle Scholar
  4. Friedman, D. I. and Amidon, G. L., Intestinal absorption mechanism of dipeptide angiotensin converting enzyme inhibitors of the lysyl-proline type: Lisinopril and SQ 29,852.J. Pharm. Sci., 78, 995–998 (1989b).PubMedCrossRefGoogle Scholar
  5. Ganapathy, V. and Leibach, F. H., Is intestinal peptide transport energized by a proton gradient?Am. J. Physiol., 249, G153-G160 (1985).PubMedGoogle Scholar
  6. Hediger, M. A., Ikeda, T., Coady, M., Gundersen, C. B., and Wright, E. M., Expression of size-selected mRNA encoding the intestinal Na+/glucose contransporter inXenopus laevis oocytes.Proc. Natl. Acad. Sci. USA, 84, 2634–2637 (1987a).PubMedCrossRefGoogle Scholar
  7. Hediger, M. A., Coady, M. J., Ikeda, T. S., and Wright, E. M., Expression cloning and cDNA sequencing of the Na+/glucose co-transporter,Nature, 330, 379–381 (1987b).PubMedCrossRefGoogle Scholar
  8. Hu, M. and Amidon, G. L., Passive and carrier-mediated intestinal absorption components of captopril.J. Pharm. Sci., 77, 1007–1011 (1988).PubMedCrossRefGoogle Scholar
  9. Kato, M., Maegawa, H., Okano, T., Inui, K., and Hori, R., Effect of various chemical modifiers on H+ coupled transport of cephradine via dipeptide carriers in rabbit intestinal brush-border membranes: role of histidine residues.J. Pharmacol. Exp. Ther., 251, 745–749 (1989).PubMedGoogle Scholar
  10. Kimura, T., Transmucosal absorption of small peptide drugs.Pharmacy International, March, 75–78 (1984).Google Scholar
  11. Klingenberg, M., Survey of carrier methodology: strategy for identification, isolation, and characterization of transport systems.Methods in Enzymology, 171, 12–23 (1989).PubMedCrossRefGoogle Scholar
  12. Kramer, W., Identification of identical binding polypeptides for cephalosporins and dipeptides in intestinal brush-border membrane vesicles by photoaffinity labeling.Biochim. Biophys. Acta, 905, 65–74 (1987).PubMedCrossRefGoogle Scholar
  13. Kramer, W., Girbig, F., Gutjahr, U., Kleemann, H., Leipe, I., Urbach, H. and Wagner, A., Interaction of renin inhibitors with the intestinal uptake system for oligopeptides and β-lactam antibiotics.Biochim. Biophys. Acta, 1027, 25–30 (1990a).PubMedCrossRefGoogle Scholar
  14. Kramer, W., Dechent, C., Girbig, F., Gutjahr, U. and Neubauer, H., Intestinal uptake of dipeptides and β-lactam antibiotics. I. the intestinal uptake system for dipeptides and β-lactam antibiotics is not part of a brush border membrane peptidase.Biochim. Biophys. Acta, 1030, 41–49 (1990b).PubMedCrossRefGoogle Scholar
  15. Kramer, W., Girbig, F., Leipe, I. and Petzoldt, E., Direct Photoaffinity labelling of binding proteins for β-lactam antibiotics in rabbit intestinal brush border membranes with [3H]benzylpenicillin.Biochem. Pharmacol., 37, 2427–2435 (1988a).PubMedCrossRefGoogle Scholar
  16. Kramer, W., Girbig, F., Petzoldt, E., and Leipe, I., Inactivation of the intestinal uptake system for β-lactam antibiotics by diethylpyrocarbonate.Biochim. Biophys. Acta, 943, 288–296 (1988b).PubMedCrossRefGoogle Scholar
  17. Kramer, W., Leipe, I., Petzoldt, E., and Girbig, F., Characterization of the transport system for β-lactam antibiotics and dipeptides in rat renal brush-border membrane vesicles by photoaffinity labeling.Biochim. Biophys. Acta, 939, 167–172 (1988c).PubMedCrossRefGoogle Scholar
  18. Lochs, H., Morse, E. L. and Adibi, S. A., Uptake and metabolism of dipeptides by human red blood cells.Biochem. J., 271, 133–137 (1990).PubMedGoogle Scholar
  19. Maniatis, T., Fritsch, E. F., and Sambrook, J., InMolecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1982.Google Scholar
  20. Matthews, D. M., Absorption of peptides by mammalian intestine. InPeptide Transport in Protein Nutrition (D. M. Matthews and J. W. Payne, eds.), North-Holland, Amsterdam, 1975, pp. 61–146.Google Scholar
  21. Matthews, D. M., Mechanisms of peptide transport.Beitr. Infusionther. Klin. Ernahr., 17, 6–53 (1987).PubMedGoogle Scholar
  22. Miyamoto, Y., Ganapathy, V., and Leibach, F. H., Identification of histidyl and thiol groups at the active site of rabbit renal dipeptide transporter.J. Biol. Chem., 261(32), 16133–16140 (1986).PubMedGoogle Scholar
  23. Miyamoto, Y., Ganapathy, V., Tiruppathi, C., and Leibach, F. H., Involvement of thiol groups in the function of the dipeptide/proton cotransport system in rabbit renal brush-border membrane vesicles.Biochim. Biophys. Acta, 978, 25–31 (1989).PubMedCrossRefGoogle Scholar
  24. Miyamoto, Y., Thompson, Y. G., Howard, E. F., Ganapathy, V., and Leibach, F. H. Functional expression of the intestinal peptide-proton co-transporter inXenopus oocytes.J. Biol. Chem., 266, 4742–4745 (1991).PubMedGoogle Scholar
  25. Morley, J. S., Hennessey, T. D., and Payne, J. W., Backbone-modified analogues of small peptides: Transport and antibacterial activity.Biochem. Soc. Trans., 11, 798–800 (1983).PubMedGoogle Scholar
  26. Nakashima, E., Tsuji, A., Mizuo, H., and Yamana, T., Kinetics and mechanism of in vitro uptake of amino-β-lactam antibiotics by rat small intestine and relation to the intact-peptide transport system.Biochem. Pharmacol., 33, 3345–3352 (1984).PubMedCrossRefGoogle Scholar
  27. Okano, T., Inui, K., Maegawa, H., Takano, M., and Hori, R., H+ coupled uphill transport of aminocephalsporins via the dipeptide transport system in rabbit intestinal brush-border membranes.J. Biol. Chem., 261, 14130–14134 (1986a).PubMedGoogle Scholar
  28. Okano, T., Inui, K., Takano, M., and Hori, R., H+ gradient-dependent transport of aminocephalosporins in rat intestinal brush-border membrane vesicles.Biochem. Pharmacol., 35, 1781–1786 (1986b).PubMedCrossRefGoogle Scholar
  29. Quick, M. W., Naeve, J., Davidson, N., and Lester, H. A., Incubation with horse serum increases viability and decreases background neurotransmitter uptake inXenopus oocytes.Bio Techniques, 13, 358–360 (1992).Google Scholar
  30. Sachs, G. and Fleischer, S., Transport machinery: an overview.Methods in Enzymology, 171, 3–12 (1989).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 1995

Authors and Affiliations

  • Doo-Man Oh
    • 1
    • 2
  • Gordon L. Amidon
    • 3
  • Wolfgang Sadee
    • 2
  1. 1.College of PharmacyHyosung Women’s UniversityKyoungbookKorea
  2. 2.Department of Pharmacy and Pharmaceutical ChemistryUniversity of CaliforniaSan FranciscoU.S.A.
  3. 3.College of PharmacyThe University of MichiganAnn ArborU.S.A.

Personalised recommendations