Advertisement

Archives of Pharmacal Research

, Volume 22, Issue 1, pp 48–54 | Cite as

Nitric oxide synthase inhibitor decreases NMDA-induced elevations of extracellular glutamate and intracellular Ca2+ levels via a cGMP-independent mechanism in cerebellar granule neurons

  • Seikwan Oh
  • Bong-Sik Yun
  • In-Ja Ryoo
  • Patrick P. McCaslin
  • Ick-Dong Yoo
Research Articles Pharmacology & Toxicology

Abstract

These studies were designed to examine the differential effect of nitric oxide (NO) and cGMP on glutamate neurotransmission. In primary cultures of rat cerebellar granule cells, the glutamate receptor agonist N-methyl-D-aspartate (NMDA) stimulates the elevation of intracellular calcium concentration ([Ca2+]i), the release of glutamate, the synthesis of NO and an increase of cGMP. Although NO has been shown to stimulate guanylyl cyclase, it is unclear yet whether NO alters the NMDA-induced glutamate release and [Ca2+]i elevation. We showed that the NO synthase inhibitor, NG-monomethyl-L-arginine (NMMA), partially prevented the NMDA-induced release of glutamate and elevation of [Ca2+]i and completely blocked the elevation of cGMP. These effects of NO on glutamate release and [Ca2+]i elevation were unlikely to be secondary to cGMP as the cGMP analogue, dibutyryl cGMP (dBcGMP), did not suppress the effects of NMDA. Rather, dBcGMP slightly augmented the NMDA-induced elevation of [Ca2+]i with no change in the basal level of glutamate or [Ca2+]i. The extracellular NO scavenger hydroxocobalamine prevented the NMDA-induced release of glutamate providing indirect evidence that the effect of NO may act on the NMDA receptor. These results suggest that low concentration of NO has a role in maintaining the NMDA receptor activation in a cGMP-independent manner.

Key words

NMDA NG-Monomethyl-L-arginine Dibutyryl-cGMP Ca2+ Influx Hydroxocobalamin Glutamate release 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referencces Cited

  1. Bashir, Z. I., Alford, S., Davies, S. N., Randall, A. D. and Collingridge, G. L., Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus.Nature 349, 156–158 (1991).PubMedCrossRefGoogle Scholar
  2. Bliss, T. V. P., Douglas, R. M., Errington, M. L. and Lynch, M. A., Correlation between long-term potentiation and release of endogenous amino acids from dentate gyrus of anaesthetized rats.J. Physiol. (Lond.) 377, 391–408 (1986).Google Scholar
  3. Bohme, G. A., Bon, C., Stutzmann, J. M., Doble, A. and Balanchard, J. C., Possible involvement of nitric oxide in long-term potentiation.Eur. J. Pharmacol. 199, 379–381 (1991).PubMedCrossRefGoogle Scholar
  4. Bradford, M. M., A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-Dye binding.Analyt. Biochem. 72, 248–254 (1976).PubMedCrossRefGoogle Scholar
  5. Bredt, D. S. and Snyder, S. H., Nitric oxide mediates glutamate-linked enhancement of cyclic GMP levels in the cerebellum.Proc. Natl. Acad. Sci. USA 86, 9030–9033 (1989).PubMedCrossRefGoogle Scholar
  6. Bredt, D. S., Hwang, P. M. and Snyder, S. H., Localization of nitric oxide synthase indicating a neuronal role for nitric oxide.Nature 347, 768–770 (1990).PubMedCrossRefGoogle Scholar
  7. Cai, Z. and McCaslin, P. P., Amitriptyline, desipramine, cyproheptadine and carbamazepine, in concentrations used therapeutically, reduced kainate- and N-methyl-D-aspartate-induced intracellular Ca2+ levels in neuronal culture.Eur. J. Pharmacol. 219, 53–57 (1992).PubMedCrossRefGoogle Scholar
  8. Davies, S. N., Lester, R. A., Reymann, K. G. and Collingridge, G. L., Temporally distinct pre- and post-synaptic mechanisms maintain long-term potentiation.Nature 338, 500–503 (1989).PubMedCrossRefGoogle Scholar
  9. Distler, M., Biel, M., Flockerzi, V. and Hofmann, F., Expression of cyclic nucleotide-gated cation channels in non-sensory tissues and cells.Neuropharmacol. 33, 1275–1282 (1994).CrossRefGoogle Scholar
  10. Ellison, D. W., Beal, M. F. and Martin, J. B., Amino acid neurotransmitters in postmortem human brain analyzed by high performance liquid chromatography with electrochemical detection.J. Neurosci. Metho. 19, 305–315 (1987).CrossRefGoogle Scholar
  11. Gally, J. A., Montague, R. P., Reeke, G. N. and Edelman, G. M., The NO hypothesis: possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system.Proc. Natl. Acad. Sci. USA 87, 3547–3551 (1990).PubMedCrossRefGoogle Scholar
  12. Garthwaite, J., Garthwaite, G., Palmer, R. M. J. and Moncada, S., NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices.Eur. J. Pharmacol. 172, 413–416 (1989).PubMedCrossRefGoogle Scholar
  13. Garthwaite, J. and Glutamate, G., Nitric oxide and cell-cell signaling in the nervous system.Trends Neurosci. 14, 60–67 (1991).PubMedCrossRefGoogle Scholar
  14. Grynkiewicz, G., Poenie, M. and Tsien, R. Y., A new generation of Ca2+ indicators with greatly improved fluorescence properties.J. Biol. Chem. 260, 3440–3450 (1985).PubMedGoogle Scholar
  15. Guevara-Guzman, R., Emson, P. C. and Kendrick, K. M., Modulation ofin vivo striatal transmitter release by nitric oxide and cyclic GMP.J. Neurochem. 62, 807–810 (1994).PubMedCrossRefGoogle Scholar
  16. Harper, J. F. and Brooker, G., Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2′O acetylation by acetic anhydride in aqueous solution.J. Cyclic. Nucleotide Res. 1, 207–218 (1975).PubMedGoogle Scholar
  17. Holscher, C. and Rose, S. P. R., An inhibition of nitric oxide synthesis prevents memory formation in the chick.Neurosci. Lett. 145, 165–167 (1992).PubMedCrossRefGoogle Scholar
  18. Jones, N. M., Loiacono, R. E., Moller, M. and Beart, P. M., Diverse roles for nitric oxide in synaptic signalling after activation of NMDA release-regulating receptors.Neuropharmacol. 33, 1351–1356 (1994).CrossRefGoogle Scholar
  19. Ligut, D. B., Corbin, J. D. and Stanton, B. A., Dual ion-channel regulation by cyclic GMP and cyclic-GMP-dependent protein kinase.Nature 344, 336–339 (1990).CrossRefGoogle Scholar
  20. Lincoln, T. M. and Corbin, J. D., Characterization and biological role of the cGMP-dependent protein kinase.Adv. Cyclic. Nucleotide Res. 15, 139–192 (1983).Google Scholar
  21. Lipton, S. A., Choi, Y. B., Pan, Z. H., Lei, S. Z., Chem, H. S. V., Sucher, N. J., Loscalzo, J., Singel, D. J. and Stamler, J. S. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds.Nature 364, 626–632 (1993).PubMedCrossRefGoogle Scholar
  22. Lynch, M. A., Errington, M. L. and Bliss, T. V. P., Long-term potentiation of synaptic transmission in the dentate gyrus: increased release of [14C]glutamate without increase in receptor binding.Neurosci. Lett. 62, 123–129 (1985).PubMedCrossRefGoogle Scholar
  23. McCaslin, P. P. and Morgan, W. W., Cultured cerebellar cells as an in vitro model of excitatory amino acid receptor function, Brain Res. 417, 380–384 (1987).PubMedCrossRefGoogle Scholar
  24. McNaught, K. S. P. and Brown, G. C., Nitric oxide causes glutamate release from brain synaptosomes.J. Neurochem. 70, 1541–1546 (1998).PubMedGoogle Scholar
  25. Meffert, M. K., Premack, B. A. and Schulman, H., Nitric oxide stimulates Ca2+-independent synaptic vesicle release.Neuron 12, 1235–1244 (1994).PubMedCrossRefGoogle Scholar
  26. Montague, P. R., Gancayco, C. D., Winn, M. J., Marchase, R. B. and Friedlander, M. J., Role of NO production in NMDA receptor-mediated neurotransmitter release in cerebral cortex.Science 263, 973–977 (1994).PubMedCrossRefGoogle Scholar
  27. Moriyoshi, K., Masu, M., Ishii, T., Shigemoto, R., Mizuno, N. and Nakanishi, S., Molecular cloning and characterization of the rat NMDA receptor.Nature 354, 31–37 (1991).PubMedCrossRefGoogle Scholar
  28. Nei, K., Matsuyama, S., Shuntoh, H. and Tanaka, C., NMDA receptor activation induces glutamate release through nitcix oxide synthesis in guinia pig dentate gyrus.Brain. Res. 728, 105–110 (1996).PubMedCrossRefGoogle Scholar
  29. O’Dell, T. J., Hawkings, R. D., Kandel, E. R. and Arancio, O., Tests of the roles of two diffusible substances in long-term potentiation: Evidence for nitric oxide as a possible early retrograde messenger.Proc. Natl. Acad. Sci. USA 88, 11285–11289 (1991).PubMedCrossRefGoogle Scholar
  30. Oh, S. and McCaslin, P. P., The iron component of sodium nitroprusside blocks NMDA-induced glutamate accumulation and intracellular Ca2+ elevation.Neurochem. Res. 20, 779–784 (1995).PubMedCrossRefGoogle Scholar
  31. Oh, S., Cai, Z. and McCaslin, P. P., Dibutyryl cGMP augments kainate-induced elevation of intracellular calcium levels but not extracellular glutamate in cultured cerebellar granule neurons.Med. Sci. Res. 24, 821–823 (1996).Google Scholar
  32. Pantazis, N. J., West, J. R. and Dai, D., The nitric oxide-cyclic GMP pathway plays an essential role in both promoting cells survival of cerebeilar granule cells in culture and protecting the cells against ethanol neurotoxicity.J. Neurochem. 70, 1826–1838 (1998).PubMedCrossRefGoogle Scholar
  33. Rajanayama, M. A. S., Li, C. G. and Rand, M. J., Differential effects of hydroxocobalamin on NO-mediated relaxation in rat aorta and anococcygeus muscle.Brt. J. Pharmacol. 108, 3–5 (1993).Google Scholar
  34. Schuman, E. M. and Madison, D. V., A requirement for the intracellular messenger nitric oxide in long term potentiation.Science 254, 1503–1506 (1991).PubMedCrossRefGoogle Scholar
  35. Schuman, E. M. and Madison, D. V., Nitric oxide and synaptic function.Ann Rev. Neurosci. 17, 153–183 (1994).PubMedCrossRefGoogle Scholar
  36. Shibuki, K. and Okada, D., Endogenous nitric oxide release required for long-term synaptic depression in the cerebellumNature 349, 326–328 (1991).PubMedCrossRefGoogle Scholar
  37. Snyder, S. H., Nitric oxide: first in a new class of neurotransmitter?Science 257, 494–496 (1992).PubMedCrossRefGoogle Scholar
  38. Zhuo, M., Hu, Y. H., Schultz, C., Kandel, E. R. and Hawkins, R. D., Role of guanylyl cyclase and cGMP-dependent protein kinase in long-term potentiation.Nature 368, 635–639 (1994).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 1999

Authors and Affiliations

  • Seikwan Oh
    • 1
  • Bong-Sik Yun
    • 1
  • In-Ja Ryoo
    • 1
  • Patrick P. McCaslin
    • 2
  • Ick-Dong Yoo
    • 1
  1. 1.Korea Research Institute of Bioscience and BiotechnologyCell Function RegulatorTaejonKorea
  2. 2.Department of Anesthesia School of MedicineWake Forest UniversityWinston-SalemUSA

Personalised recommendations