Skip to main content
Log in

Nitric oxide synthase inhibitor decreases NMDA-induced elevations of extracellular glutamate and intracellular Ca2+ levels via a cGMP-independent mechanism in cerebellar granule neurons

  • Research Articles
  • Pharmacology & Toxicology
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

These studies were designed to examine the differential effect of nitric oxide (NO) and cGMP on glutamate neurotransmission. In primary cultures of rat cerebellar granule cells, the glutamate receptor agonist N-methyl-D-aspartate (NMDA) stimulates the elevation of intracellular calcium concentration ([Ca2+]i), the release of glutamate, the synthesis of NO and an increase of cGMP. Although NO has been shown to stimulate guanylyl cyclase, it is unclear yet whether NO alters the NMDA-induced glutamate release and [Ca2+]i elevation. We showed that the NO synthase inhibitor, NG-monomethyl-L-arginine (NMMA), partially prevented the NMDA-induced release of glutamate and elevation of [Ca2+]i and completely blocked the elevation of cGMP. These effects of NO on glutamate release and [Ca2+]i elevation were unlikely to be secondary to cGMP as the cGMP analogue, dibutyryl cGMP (dBcGMP), did not suppress the effects of NMDA. Rather, dBcGMP slightly augmented the NMDA-induced elevation of [Ca2+]i with no change in the basal level of glutamate or [Ca2+]i. The extracellular NO scavenger hydroxocobalamine prevented the NMDA-induced release of glutamate providing indirect evidence that the effect of NO may act on the NMDA receptor. These results suggest that low concentration of NO has a role in maintaining the NMDA receptor activation in a cGMP-independent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Referencces Cited

  • Bashir, Z. I., Alford, S., Davies, S. N., Randall, A. D. and Collingridge, G. L., Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus.Nature 349, 156–158 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Bliss, T. V. P., Douglas, R. M., Errington, M. L. and Lynch, M. A., Correlation between long-term potentiation and release of endogenous amino acids from dentate gyrus of anaesthetized rats.J. Physiol. (Lond.) 377, 391–408 (1986).

    CAS  Google Scholar 

  • Bohme, G. A., Bon, C., Stutzmann, J. M., Doble, A. and Balanchard, J. C., Possible involvement of nitric oxide in long-term potentiation.Eur. J. Pharmacol. 199, 379–381 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M. M., A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-Dye binding.Analyt. Biochem. 72, 248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Bredt, D. S. and Snyder, S. H., Nitric oxide mediates glutamate-linked enhancement of cyclic GMP levels in the cerebellum.Proc. Natl. Acad. Sci. USA 86, 9030–9033 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Bredt, D. S., Hwang, P. M. and Snyder, S. H., Localization of nitric oxide synthase indicating a neuronal role for nitric oxide.Nature 347, 768–770 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Cai, Z. and McCaslin, P. P., Amitriptyline, desipramine, cyproheptadine and carbamazepine, in concentrations used therapeutically, reduced kainate- and N-methyl-D-aspartate-induced intracellular Ca2+ levels in neuronal culture.Eur. J. Pharmacol. 219, 53–57 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Davies, S. N., Lester, R. A., Reymann, K. G. and Collingridge, G. L., Temporally distinct pre- and post-synaptic mechanisms maintain long-term potentiation.Nature 338, 500–503 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Distler, M., Biel, M., Flockerzi, V. and Hofmann, F., Expression of cyclic nucleotide-gated cation channels in non-sensory tissues and cells.Neuropharmacol. 33, 1275–1282 (1994).

    Article  CAS  Google Scholar 

  • Ellison, D. W., Beal, M. F. and Martin, J. B., Amino acid neurotransmitters in postmortem human brain analyzed by high performance liquid chromatography with electrochemical detection.J. Neurosci. Metho. 19, 305–315 (1987).

    Article  CAS  Google Scholar 

  • Gally, J. A., Montague, R. P., Reeke, G. N. and Edelman, G. M., The NO hypothesis: possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system.Proc. Natl. Acad. Sci. USA 87, 3547–3551 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite, J., Garthwaite, G., Palmer, R. M. J. and Moncada, S., NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices.Eur. J. Pharmacol. 172, 413–416 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite, J. and Glutamate, G., Nitric oxide and cell-cell signaling in the nervous system.Trends Neurosci. 14, 60–67 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Grynkiewicz, G., Poenie, M. and Tsien, R. Y., A new generation of Ca2+ indicators with greatly improved fluorescence properties.J. Biol. Chem. 260, 3440–3450 (1985).

    PubMed  CAS  Google Scholar 

  • Guevara-Guzman, R., Emson, P. C. and Kendrick, K. M., Modulation ofin vivo striatal transmitter release by nitric oxide and cyclic GMP.J. Neurochem. 62, 807–810 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Harper, J. F. and Brooker, G., Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2′O acetylation by acetic anhydride in aqueous solution.J. Cyclic. Nucleotide Res. 1, 207–218 (1975).

    PubMed  CAS  Google Scholar 

  • Holscher, C. and Rose, S. P. R., An inhibition of nitric oxide synthesis prevents memory formation in the chick.Neurosci. Lett. 145, 165–167 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Jones, N. M., Loiacono, R. E., Moller, M. and Beart, P. M., Diverse roles for nitric oxide in synaptic signalling after activation of NMDA release-regulating receptors.Neuropharmacol. 33, 1351–1356 (1994).

    Article  CAS  Google Scholar 

  • Ligut, D. B., Corbin, J. D. and Stanton, B. A., Dual ion-channel regulation by cyclic GMP and cyclic-GMP-dependent protein kinase.Nature 344, 336–339 (1990).

    Article  Google Scholar 

  • Lincoln, T. M. and Corbin, J. D., Characterization and biological role of the cGMP-dependent protein kinase.Adv. Cyclic. Nucleotide Res. 15, 139–192 (1983).

    CAS  Google Scholar 

  • Lipton, S. A., Choi, Y. B., Pan, Z. H., Lei, S. Z., Chem, H. S. V., Sucher, N. J., Loscalzo, J., Singel, D. J. and Stamler, J. S. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds.Nature 364, 626–632 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M. A., Errington, M. L. and Bliss, T. V. P., Long-term potentiation of synaptic transmission in the dentate gyrus: increased release of [14C]glutamate without increase in receptor binding.Neurosci. Lett. 62, 123–129 (1985).

    Article  PubMed  CAS  Google Scholar 

  • McCaslin, P. P. and Morgan, W. W., Cultured cerebellar cells as an in vitro model of excitatory amino acid receptor function, Brain Res. 417, 380–384 (1987).

    Article  PubMed  CAS  Google Scholar 

  • McNaught, K. S. P. and Brown, G. C., Nitric oxide causes glutamate release from brain synaptosomes.J. Neurochem. 70, 1541–1546 (1998).

    PubMed  CAS  Google Scholar 

  • Meffert, M. K., Premack, B. A. and Schulman, H., Nitric oxide stimulates Ca2+-independent synaptic vesicle release.Neuron 12, 1235–1244 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Montague, P. R., Gancayco, C. D., Winn, M. J., Marchase, R. B. and Friedlander, M. J., Role of NO production in NMDA receptor-mediated neurotransmitter release in cerebral cortex.Science 263, 973–977 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Moriyoshi, K., Masu, M., Ishii, T., Shigemoto, R., Mizuno, N. and Nakanishi, S., Molecular cloning and characterization of the rat NMDA receptor.Nature 354, 31–37 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Nei, K., Matsuyama, S., Shuntoh, H. and Tanaka, C., NMDA receptor activation induces glutamate release through nitcix oxide synthesis in guinia pig dentate gyrus.Brain. Res. 728, 105–110 (1996).

    Article  PubMed  CAS  Google Scholar 

  • O’Dell, T. J., Hawkings, R. D., Kandel, E. R. and Arancio, O., Tests of the roles of two diffusible substances in long-term potentiation: Evidence for nitric oxide as a possible early retrograde messenger.Proc. Natl. Acad. Sci. USA 88, 11285–11289 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Oh, S. and McCaslin, P. P., The iron component of sodium nitroprusside blocks NMDA-induced glutamate accumulation and intracellular Ca2+ elevation.Neurochem. Res. 20, 779–784 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Oh, S., Cai, Z. and McCaslin, P. P., Dibutyryl cGMP augments kainate-induced elevation of intracellular calcium levels but not extracellular glutamate in cultured cerebellar granule neurons.Med. Sci. Res. 24, 821–823 (1996).

    CAS  Google Scholar 

  • Pantazis, N. J., West, J. R. and Dai, D., The nitric oxide-cyclic GMP pathway plays an essential role in both promoting cells survival of cerebeilar granule cells in culture and protecting the cells against ethanol neurotoxicity.J. Neurochem. 70, 1826–1838 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Rajanayama, M. A. S., Li, C. G. and Rand, M. J., Differential effects of hydroxocobalamin on NO-mediated relaxation in rat aorta and anococcygeus muscle.Brt. J. Pharmacol. 108, 3–5 (1993).

    Google Scholar 

  • Schuman, E. M. and Madison, D. V., A requirement for the intracellular messenger nitric oxide in long term potentiation.Science 254, 1503–1506 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Schuman, E. M. and Madison, D. V., Nitric oxide and synaptic function.Ann Rev. Neurosci. 17, 153–183 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Shibuki, K. and Okada, D., Endogenous nitric oxide release required for long-term synaptic depression in the cerebellumNature 349, 326–328 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Snyder, S. H., Nitric oxide: first in a new class of neurotransmitter?Science 257, 494–496 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Zhuo, M., Hu, Y. H., Schultz, C., Kandel, E. R. and Hawkins, R. D., Role of guanylyl cyclase and cGMP-dependent protein kinase in long-term potentiation.Nature 368, 635–639 (1994).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, S., Yun, BS., Ryoo, IJ. et al. Nitric oxide synthase inhibitor decreases NMDA-induced elevations of extracellular glutamate and intracellular Ca2+ levels via a cGMP-independent mechanism in cerebellar granule neurons. Arch Pharm Res 22, 48–54 (1999). https://doi.org/10.1007/BF02976435

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02976435

Key words

Navigation