Advertisement

Effects of placing micro-implants of melatonin in striatum on oxidative stress and neuronal damage mediated by N-methyl-D-aspartate (NMDA) and non-NMDA receptors

  • Hwa-Jung Kim
  • Jin Suk Kwon
Research Articles Pharmacology & Toxicology

Abstract

Overstimulation of both kainate (KA) and N-methyl-D-aspartate (NMDA) receptors has been reported to induce excitatoxicity which can be characterized by neuronal damage and formation of reactive oxygen free radicals. Neuroprotective effect of melatonin against KA-induced excitotoxicity have been documentedin vitro andin vivo. It is, however, not clear whether melatonin is also neuroportective against excitotoxicity mediated by NMDA receptors. In the present work, we tested thein vivo protective effects of striatally infused melatonin against the oxidative stress and neuronal damage induced by the injection of KA and NMDA receptors into the rat striatum. Melatonin implants consisting of 22-gauge stainless-steels cannule with melatonin fused inside the tip were placed bilaterally in the rat brain one week prior to intrastriatal injection of glutamate receptor subtype agonists. Melatonin showed protective effects against the elevation of lipid peroxidation induced by either KA or NMDA and recovered Cu, Zn-superoxide dismutase activities reduced by both KA and NMDA into the control level. Melatonin also clearly blocked both KA- and NMDA-receptor mediated neuronal damage assessed by the determination of choline acetyltransferase activity in striatal homogenages and by microscopic observation of rat brain section stained with cresyl violet. The protective effects of melatonin are comparable to those of DNQX and MK801 which are the KA- and NMDA-receptor antagonist, respectively. It is suggested that melatonin could protect against striatal oxidative damages mediated by glutamate receptors, both non-NMDA and NMDA receptors.

Key words

Melatonin Rat striatum Glutamate receptors Oxidative stress Neuronal damage SOD Lipid peroxidation 

References Cited

  1. Ackerman, E. J. and Dennis, E. A., Mammalian calcium independent phospholipase A2.Biochem., Biophys. Acta, 1259, 125–136 (1995).Google Scholar
  2. Aizenman, E., Hartnett, K. and Reynolds, I., Oxigen free radicals regulate NMDA receptor function via a redox modulatory site.Neuron, 5, 841–846 (1990)PubMedCrossRefGoogle Scholar
  3. Albin, R. L., Makowiec, R. L., Hollingsworth, Z. R., Duro, L. S., Penney, J. B. and Young, A. B., Excitotory amino acid binding sitesin the basal ganglia or the rat: a quantitative autoradiographic study.Neuroscience, 46, 35–48 (1992).PubMedCrossRefGoogle Scholar
  4. Antolín, I., Rodríguez, C., Sáinz, R. M., Mayo, J. C., Uría, H., Kotler, M. L., Rodríguez-Colunga, M. J., Tolivia, D. and Menéndez-Peláez, A., Neuorhormone melatonin prevents cell damage: effect on gene expression for antioxidant enzymes.FASEB J., 10, 882–890 (1996).PubMedGoogle Scholar
  5. Arendt, J., Melatonin.Clin. Endocrinol., 29, 205–229 (1988)CrossRefGoogle Scholar
  6. Avraham, K. B., Schickler, M., Sapoznikov, D., Yarom, R. and Groner, Y., Down’s syndrome: abnormal neuromuscular junction in tongue of transgenic mice with elevated levels of human Cu-Zn-superoxide dismutase.Cell, 54, 823–829 (1988)PubMedCrossRefGoogle Scholar
  7. Bar Peled, O., Korkotian, E., Segal, M. and Groner, Y., Constitutive overexpression of Cu/Zn superoxide dismutase exacerbates kainic acid-induced apoptosis of transgenic-Cu/Zn usperoxide dismutase neurons.Proc. Natl. Acad. Sci. USA, 93, 8530–8535 (1996)CrossRefGoogle Scholar
  8. Barlow-Walden, L. R., Reiter, R. J. and Pablos, M. I., Melatonin stimulates brain glutathion peroixdase activity.Neurochem. Int., 26, 497–502 (1995)PubMedCrossRefGoogle Scholar
  9. Bondy, S. C. and Lee, D. K., Oxidative stress induced by glutamate receptor agonists,Brain Res., 610, 229–233 (1993)PubMedCrossRefGoogle Scholar
  10. Cassone, V. M., Chesworth, M. J. and Prosser, R. A., Entrainment of rat circadian rhythms by daily injection of melatonin depends upon the hypothalamic suprachiasmatic nucleus.Physiol. Behav., 36, 111–121 (1986)CrossRefGoogle Scholar
  11. Choi, D. W., Glutamate neurotoxicity and disease of the nervous system.Neuron, 1, 623–634 (1988)PubMedCrossRefGoogle Scholar
  12. Choi, D. W., Maulucci-Gedde, M. A. and Kriegstein, A. R., Glutamate neurotoxicity in cortical cell culture.J. Neurosci., 7, 357–368 (1987)PubMedGoogle Scholar
  13. Chow, H. S., Lynch III, J. J., Rose, K. and Choi, D. W., Trolox attenuates cortical neuronal injury induced by iron, ultraviolet light, glucose deprivation, or AMPA.Brain Res., 639, 102–108 (1994)PubMedCrossRefGoogle Scholar
  14. Clifford, D. B., Xorumski, C. F. and Olney, J. W., Ketamine and MK-801 prevent degeneration of thalamic neurons induced by focal cortical seizures.Exp. Neurol., 105, 272–279 (1989)PubMedCrossRefGoogle Scholar
  15. Coyle, J. T. and Puttfarcken, P., Oxidative stress, glutamate, and neurodegenerative diseases.Science, 262, 689–695 (1993)PubMedCrossRefGoogle Scholar
  16. Dykens, J. A., Stern, A. and Trenker, E., Mechanism of Kainate toxicity to cerebellar neurons in vitro is analogus to reperfusion tissue injury.J. Neurochem., 49, 1222–1228 (1987)PubMedCrossRefGoogle Scholar
  17. Fonnum, R., Radiochemical micro assay for the determination of choline acetyltransferase and acetylcholinesterase activities.Biochem. J., 115, 465–472 (1969)PubMedGoogle Scholar
  18. Foster, A. C., Gill, R. and Woodruff, G. N., Neuroprotective effects of MK-801in vivo: selectivity and evidence of delayed degeneration mediated by NMDA receptor activation.J. Neurosci., 8, 4745–4754 (1988)PubMedGoogle Scholar
  19. Freeman, B. A., Young, S. L. and Crapo, J. D., Liposomemediated augmentation of superoxide dismutase in endothelial cells prevents oxygen injury.J. Biol. Chem., 258, 12534–12542 (1983)PubMedGoogle Scholar
  20. Giusti, P., Gusella, M. and Liparetti, M., Melatonin protects promary cultures of cerebellar granule neurons from kainate but not from N-methly-D-aspartate excitatoxicity.Exp. Neurol., 131, 39–46 (1995)PubMedCrossRefGoogle Scholar
  21. Giusti, P., Lipartit, M., Franceschini, D., Schilavo, N., Floreani, M. and Manev, H., Neuroprotection by melatonin from kainate-induced excitotoxicity in rats.FASEB J., 10, 891–896 (1996a)PubMedGoogle Scholar
  22. Giusti, P., Franceschini, D., Kharlamov, A. and Manev, H., Protective effect of melatonin against hippocampal DNA damage induced by intraperitoneal administration of kainate to rats.Neurosci. 73, 634–636 (1996b)Google Scholar
  23. Hollman, M. and Heinmann, S., Cloned glutamate receptors.Annu. Rev. Neurosci., 17, 31–108 (1994)CrossRefGoogle Scholar
  24. Hugon, J., ALS therapy: targets for the future.Neurology, 47, S251–254 (1996)PubMedGoogle Scholar
  25. Jhamandas, K. H., Boegman, R. J. and Beninger, R. I., Quinolinic acid induced brain neurotransmitter deficits: modulation by endogenous excitotoxin antagonists.Can. J. Physiol. Pharmacol. 72, 1473–1482 (1994)PubMedGoogle Scholar
  26. Kondo, T., Reaume, A. G., Huang, T. T., Carlson, E., Murakami, K., Chen, S. F., Hoffman, E. K., Scott, R. W., Epstein, C. J. and Chan, P. H., Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia.,J. Neuorsci., 17, 4180–4189 (1997)Google Scholar
  27. Lincoln, G. A. and Maeda, K.-I., Reproductive effects of placing micro-implants of melatonin in the mediobasal hypothalamus and preoptic area in rams.J. Endocrinol., 132, 201–215 (1992a)PubMedGoogle Scholar
  28. Lincoln, G. A. and Maeda, K.-I., Effects of placing micro-implants of melatonin in the mediobasal hypothalamus and preoptic area on the secretion of prolactin and β-endorphin in rams.J. Endocrinol., 134, 437–438 (1992b)PubMedCrossRefGoogle Scholar
  29. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J., Protein measurement with the Folin reagent.J. Biol. Chem., 193, 265–275 (1951)PubMedGoogle Scholar
  30. Menendez-Pelaez, A., Poeggeler, B., Reiter, R. J., Barlow-Walden, L. R., Pablos, M. I. and Tan, D. X., Nuclear localization of melatonin in different mammalian tissues. Immunocytochemical and radioimmunoassay evidence.J. Cell. Biochem., 53, 372–382 (1993)CrossRefGoogle Scholar
  31. Manov, H., Uz, T. and Joo, J. Y., Increased brain damage after stroke or excotatoxic seizures in melatonin-deficient rats.FASEB J. 10, 1546–1551 (1996)Google Scholar
  32. Massieu, L. and Tapia, R., NBQX protects against both AMPA and KA-induced lesion in rat striatumin vivo.Neuroscience, 59, 931–938 (1994)PubMedCrossRefGoogle Scholar
  33. McCord, J. M. and Fridovich, I., Superoxide dismutase,J. Biol. Chem., 244, 6049–6055 (1969)PubMedGoogle Scholar
  34. Mcgeorge, A. J. and Faull, R. L. M., The organization of the projection from the cerebral cortex to the striatum in the rat.Neuroscience, 29, 503–537 (1989)PubMedCrossRefGoogle Scholar
  35. Melchiorri, D., Reiter, R. J., Sewery E., Chen, L. and Nistico, G., Melatonin reduces KA-induced lipid peroxidation in homogenates of different brain region.FASEB J., 9, 1205–1210 (1995)PubMedGoogle Scholar
  36. Nakahishi, S., Molecular diversity of glutamate receptors and implications for brain function.Science, 258, 597–603 (1992)CrossRefGoogle Scholar
  37. Pellegrini-Giampiatro, D. E., Cherici, G., Aleciani, M. and Caria, V. and Moroni, F., Excitatory amino acid release and free radical formation may cooperation in the genesis of ischemia-induced neuronal damage.J. Neurosci., 10, 1035–1041 (1990)Google Scholar
  38. Reiter, R. J., Oxidative processes and antioxidant drfence mechanism in the aging brain.FASEB J., 9, 526–533 (1993)Google Scholar
  39. Reiter, R. J., Functional aspects of the pineal hormone melatonin in combating cell and tissue damage induced by free radical.Eur. J. Endocrinol., 134, 412–420 (1996)PubMedGoogle Scholar
  40. Reiter, R. J. and Tang, L., Pharmacological action of melatonin in oxygen radical pathophysiology.Life Science, 60, 2255–2271 (1997)CrossRefGoogle Scholar
  41. Schwarts, P. J. and Coyle, J. T., Effects of overexpression of the cytoplasmic copper-zinc superoxide dismutase on the survival of neuronsin vitro.Synapse, 29, 206–212 (1998)CrossRefGoogle Scholar
  42. Schwarts, P. J., Reaume, A. and Coyle, J. T., Effects of over- and under-expression of Cu, Zn-superoxide dismutases on the toxicity ov glutamate analogs in transgenic mouse striatum.Brain Res., 789, 32–39 (1998)CrossRefGoogle Scholar
  43. Simon, R. P., Swan, J. H., Griffiths, T. and Meldrum, B. S., Blockade of N-mdthyl-D-aspartate receptors may protect against ischemic damage in the brain.Science, 226, 850–852 (1984)PubMedCrossRefGoogle Scholar
  44. Tan, D. X., Reiter, R. J., Chen, L. D., Poeggeler, B., Manchester, L. C. and Barlow-Walden, S. R., Both physiological and pharmacological levels of melatonin reduced DNA adducts formation induced by the chemical carcinogen safrole.Carcinogenesis, 15, 215–218 (1994)PubMedCrossRefGoogle Scholar
  45. Triggs, J. W. and Willmore, L. J.,In vivo lipid peroxidation in rat brain following intracortical Fe++ injection.J. Neurochem., 42, 976–980 (1984)PubMedCrossRefGoogle Scholar
  46. Weiloch, T., Hypoglycemia induced neuronal damage prevented by an N-methyl-D-aspartate antagonist.Science, 230, 681–683 (1985)CrossRefGoogle Scholar
  47. Wullner, U., Standaert, D. G., Testa, C. M., Landwehrmeyer, G. B., Catania, M. V., Penney Jr., J. B. and Young, A. B., glutamate receptor expression in rat striatum: effect of deafferentiation.Brain Res., 647, 209–219 (1994)PubMedCrossRefGoogle Scholar
  48. Zelman, F. P., Thienhaus, O. J. and Bosmann, H. B., Superoxide dismutase activity in Alzheimer’s disease: possible mechanism for paired helical filament formation.Brain Res., 476, 160–162 (1989)CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 1999

Authors and Affiliations

  • Hwa-Jung Kim
    • 1
  • Jin Suk Kwon
    • 1
  1. 1.College of PharmacyEwha Womans UniversitySeoulKorea

Personalised recommendations