Advertisement

Archives of Pharmacal Research

, 27:893 | Cite as

Synthesis and evaluation of antitumor activity of 2- and 6-[(1,3-benzothiazol-2-yl)aminomethyl]-5,8-dimethoxy-1,4-naphthoquinone derivatives

  • Yongseog Chung
  • Young-Kook Shin
  • Chang-Guo Zhan
  • Sungduck Lee
  • Hoon Cho
Research Article Article

Abstract

2- or 6-Substituted BZT-N derivatives were synthesized, and their cytotoxic activity against cancer L1210 and SNU-1 cells was examined. The antitumor action was also assessed in mice bearing S-180 cells in peritoneal cavity. In a comparison, it was found that 6-substituted BZT-N derivatives exhibited higher potencies in both bioactivities than 2-substituted BZT-N derivatives against L1210 cells inin vitro and S-180in vitro tests exception of compound36. Interestingly, it was observed that 2-substituted compound36, which has methyl group at R1 position, exhibited a better antitumor activity than 6-substituted compounds against L1210 and SNU-1in vitro. The ED50 value of 2-substituted compound36 against L1210 was found to be comparable to the ED50 value of adriamycin and was even better against the solid cancer cell line SNU-1. It was also observed that 2-substituted compound36 showed better antitumor activity in mice bearing S-180 cells in the peritoneal cavity. The T/C (%) value of 2-substituted compound36 was similar to that of adriamycin. Quantitative structure-activity relationship (QSAR) tests reveal that the experimental ED50 values against SNU-1 closely correlate with both the calculated HOMO energies(Ehomo) and the measured1H-NMR chemical shift of 3-H (δH). The results suggests that a compound having higherEHOmo and δH values usually should have a lower ED50 (SNU-1) value.

Key words

Naphthoquinone Cytotoxicity Antitumor activity 

References

  1. Aviado, D. M. and Will, D. H., Pharmacology of naphthoquinones, with special reference to the antimalarial activity of Lapinone (WR 26,041).Am. J. Trop. Med. Hyg., 18, 188–198 (1969).PubMedGoogle Scholar
  2. Baik, K. U., Song, G. Y., Kim, Y., Sok, D. E., and Ahn, B. Z., 2-Substitued Naphthazarins; Synthesis and Antitumor Activity.Arch. Pharm. Med. Chem., 330, 377–382 (1997).CrossRefGoogle Scholar
  3. Benthey, W. H., Robinson, R., and Weizmann, C., 3-Hydroxyphthalic and 3-Methoxyphthalic Acids and Their Derivatives.J. Chem. Soc., 104–112 (1907).Google Scholar
  4. Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D., and Mitchell, J. B., Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing.Cancer Res., 47, 936–942 (1987).PubMedGoogle Scholar
  5. Carter, A. H., Race, E., and Rowe, F. M., Bromination of 1,5-dihydroxy- and 1,5-diacetoxynaphthalene, 5-methoxy-1-naphthol and 1,5-dimethoxynaphthalene.J. Chem. Soc., 236–239(1942).Google Scholar
  6. Chae, G. H., Song, G. Y., Kim, Y., Cho, H., Sok, D. E. and Ahn, B. Z., 2-or 6-(1-Azidoalkyl)-5,8-Dimethoxy-1,4-Naphthoquinone: Synthesis, Evaluation of Cytotoxic Activity, Antitumor Activity and Inhibitory Effect on DNA Topoisomerase-I.Arch. Pharm. Res., 22, 507–514 (1999).PubMedGoogle Scholar
  7. Cho, H. and Chung, Y., Synthesis and Antitumor Activity of Naphthoquinone Derivatives (I).Kor. J. Med. Chem., 8, 30–37 (1998).Google Scholar
  8. Foye, M. O., Cancer Chemotherapeutic Agents. American Chemical Society, Washington, D.C., p 203 (1995).Google Scholar
  9. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, Jr., J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Lyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Adamo, C, Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C, Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J.. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., Pople, J. A.,Gaussian 03, Revision A.1, Gaussian Inc., Pittsburgh, PA, 2003.Google Scholar
  10. Hehre, W. J., Radom, L., Schleyer, P. V. R., and Pople, J. A., Ab Initio Molecular Orbital Theory. John Wiley & Sons, New York, 1987.Google Scholar
  11. Hertzberg, R. P. and Dervan, P. B., Cleavage of DNA with methidiumpropyl-EDTA-iron(II): reaction conditions and product analyses.Biochemistry, 23, 3934–3945 (1984).PubMedCrossRefGoogle Scholar
  12. Kelkar, V. V., Dhumal, V. R., Bhavsar, V. H., and Mardikar, B. R., Some aspects of activity profile of sodium lawsonate in mice and rats.Arch. Int. Pharmacodyn. Ther., 283, 71–79 (1986).PubMedGoogle Scholar
  13. Leopold, W. R., Shillis, J. L., Mertus, A. E., Nelson, J. M., Roberts, B. J., and Jackson, R. C., Anticancer activity of the structurally novel antibiotic CI-920 and its analogues.Cancer Res., 44, 1928–1932 (1984).PubMedGoogle Scholar
  14. Lown, J. W., Sim, S. K., Majumdar, K. C., and Chang, R.Y., Strand scission of DNA by bound adriamycin and daunorubicin in the presence of reducing agents.Biochem. Biophys. Res. Commun., 76(3), 705–710 (1977).PubMedCrossRefGoogle Scholar
  15. Scheithauer, W., Von Hoff, D. D., Clark, G. M., Shillis, J. L., and Elslager, E. F.,In vitro activity of the novel antitumor antibiotic fostriecin (CI-920) in a human tumor cloning assay.Eur. J.Cancer Clin. Oncol., 22, 921–926 (1986).PubMedCrossRefGoogle Scholar
  16. Silverman, R. B., The Organic Chemistry of Drug Design and Drug Action. Academic Press, New York, pp 255–258 (1992).Google Scholar
  17. Skelton, F. S., Bowman, C. M., Porter, T. H., and Folkers, K., New quinolinequinone inhibitors of mitochondrial reductase systems and reversal by coenzyme Q.Biochem. Biophys. Res. Commun., 43, 102–107 (1971).PubMedCrossRefGoogle Scholar
  18. Song, G. Y., Kim, Y., Cho, H., and Ahn, B. Z., Naphthazarin Derivatives (VII): Antitumor Action against ICR Mice Bearing Ascitic S-180 Cells.Arch. Pharm. Res., 24, 190 (2001).PubMedGoogle Scholar
  19. Tewey, K. M., Chen, G. L., Nelson, E. M., and Liu, L. F., Intercalate antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II.J. Biol. Chem., 259, 9182–9187 (1984).PubMedGoogle Scholar
  20. You, Y. J., Zheng, X. G., Kim, Y., and Ahn, B. Z., Naphthazarin derivatives: synthesis, cytotoxic mechanism and evaluation of antitumor activity.Arch. Pharm. Res., 21, 595–598 (1998a).PubMedGoogle Scholar
  21. You, Y. J. and Ahn, B. Z., 6-(1-Alkenoyloxyalkyl)-5,8-dimethoxy-1,4-naphthoquinone Derivatives:Synthesis and Evaluation of Antitumor Activity.Arch. Pharm. Res., 21, 738–743 (1998b).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2004

Authors and Affiliations

  • Yongseog Chung
    • 1
  • Young-Kook Shin
    • 1
  • Chang-Guo Zhan
    • 1
    • 2
  • Sungduck Lee
    • 1
    • 3
  • Hoon Cho
    • 1
    • 2
  1. 1.Department of Chemistry, Institute for Basic ScienceChungbuk National UniversityChungbukKorea
  2. 2.Department of Pharmaceutical Sciences, College of PharmacyUniversity of KentuckyLexingtonUSA
  3. 3.Department of StatisticsChungbuk National UniversityChungbukKorea

Personalised recommendations