Archives of Pharmacal Research

, Volume 27, Issue 10, pp 1023–1028 | Cite as

Flavonoids fromIris spuria (Zeal) cultivated in Egypt

  • Abdel Nasser B. Singab
Research Article Article


A new 12a-dehydrorotenoid 1, 11-dihydroxy-9, 10-methylenedioxy-12a-dehydrorotenoid(1), together with a new isoflavonoid glycoside tectorigenin-7-O-β-glucosyl-4’-O-β-glucoside(3), were isolated and identified from the rhizomes ofI. spuria (Zeal). In addition, 4 known compounds, tectorigenin(2) tectorigenin-7-O-β-glucosyl (1 → 6) glucoside(4), tectoridin (a tectorigenin-7-O-β-glucoside)(5) and tectorigenin-4’-O-β-glucoside(6) were isolated and identified for the first time from this plant. The structures of the isolated compounds were determined by spectroscopic methods (UV, IR,1H,13C-NMR, DEPT, HMQC, NOESY, and HMBC experiments and MS spectrometry) and by comparison with literature data of known compounds. Compounds2, 4, 5, and6 are reported for the first time from this plant through the present study.


Iris spuria (Zeal) Iridiaceae Rhizomes 12a-Dehydrorotenoid 1 11-Dihydroxy- 9 10 methylenedioxy-12a-dehydrorotenoid Isoflavonoid glycoside Tectorigenin-7-O-p-glucosyl-4’-O-β-glucoside 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, P. K.,Carbon-13 NMR of Flavonoids, Elsevier Sciences Publishing Company INC, New York, p. 5 (1989).Google Scholar
  2. Agarwal, V. K., Thappa, R. K., Agarwal, S. G., and Dhar, K. L., Phenolic constituents ofIris milesii rhizomes.Phytochemistry, 23, 1342–1343 (1984).CrossRefGoogle Scholar
  3. Breitmaier, Em. and Voelter, W.,Carbon-13 NMR Spectroscopy 3rd ed. VCH Publishers, New York (1987).Google Scholar
  4. Dewick, P. M., The Shikimate Pathway, In:Medicinal natural products: a biosynthetic approach, 2nd ed., John Wiley & Sons Ltd, New York, p. 155 (2002).Google Scholar
  5. Elangovan, V., Sekar, N., and Govindasamy, S., Chemopreventive potential of dietary bioflavonoids against 20-methylcholanthrene-induced tumorigenesis.Cancer Lett., 87, 107–113 (1994).PubMedCrossRefGoogle Scholar
  6. El-Hadidi, M. N. and Fayed, A. A.,Taeckholmia., Giza 12613, Egypt, Cairo University Herbarium, No. 15, p. 189 (1995).Google Scholar
  7. Farag, F. S., Backheet, Y. E., El-Emary, A. N., and Niwa, M., Isoflavonoids and flavone glycosides from rhizomes ofIris carthaliniae.Phytochemistry, 50, 1407–1410 (1999).CrossRefGoogle Scholar
  8. Harborne, J. B., Mabry, T. J., and Mabry, H.,The Flavonoids, Academic Press, London, New York (1975).Google Scholar
  9. Ito, C., Itoigawa, M., Kojima, N., Tan, H.,Takayasu, J., Tokuda, H., Nishino, H., and Furukawa, H., Cancer chemoprevantive activity of rotenoids fromDenis trifoliata.Planta Med., 70, 8–11 (2004).PubMedCrossRefGoogle Scholar
  10. Kan, W. S., Manual of Medicinal Plants in Taiwan;National Research Institute of Chinese Medicine, Taiwan, 2, 276–280 (1972).Google Scholar
  11. Li, L., Wang, H. K., Chang, J. J., McPhail, A. T., McPhail, D., and Terada, H., Anti-tumor agents, 138. Rotenoids and isoflavones as cytotoxic constituents fromAmorpha jruticosa.J. Nat. Prod., 56, 960–968 (1993).Google Scholar
  12. Mabry, T. J., Markham, K. R., and Thomas, M. B.,The systematic Identification of Flavonoids. Springer-Verlag, Berlin (1970).Google Scholar
  13. Marner, F.-J., Singab, B. A., Al-Azizi, M. M., El-Emary, A. N., and Schäfer, M., Iridal glycosides fromIris spuria (Zeal), cultivated in Egypt.Phytochemistry, 60, 301–307 (2002).PubMedCrossRefGoogle Scholar
  14. Messana, I., Ferrara, F., and Goulart Santana, E. A., Two 12a-hydroxyrotenoids fromBoerhaavia cocciniea.Phytochemistry, 25, 2688–2689 (1986).CrossRefGoogle Scholar
  15. Nagarajan, N. S. and Narayanan, V., Chemical constituents of the roots ofDalbergia sissoides.Fitoterapia, 59(4), 341–342 (1988).Google Scholar
  16. Shawl, S. A., Mengi, N., Kaul, K. M., and Vishwapaul, Flavonoids ofIris spuria.Phytochemistry, 27, 1559–1560 (1988a).CrossRefGoogle Scholar
  17. Shawl, S. A., Mengi, N., Misra, N. L., and Vishwapaul, Irispurinol, a 12a-hydroxyrotenoid fromIris spuria.Phytochemistry, 27, 3331–3332 (1988b).CrossRefGoogle Scholar
  18. Shawl, S. A., Vishwapaul, Asif, Z., and Kalla, K. A., Isoflavones ofIris spuria.Phytochemistry, 23, 2405–2406 (1984).CrossRefGoogle Scholar
  19. Shawl, S. A. and Kumar, T., Isoflavonoids fromIris crocea.Phytochemistry, 31, 1399–1401 (1992).CrossRefGoogle Scholar
  20. Shin, H. K., Kim, Y. P., Lim, S. S., Lee, S., Ryu, N., Yamada, M., and Ohuchi, K., Inhibition of prostaglandin E2 production by the isoflavones tectorigenin and tectordin isolated from the rhizomes ofBelamcanda chinensis.Plants Med., 65, 776–777 (1999).CrossRefGoogle Scholar
  21. Wollenweber, E., Stevens, J. J., Klimo, K., Knauft, J., Frank, N., and Gerhäuser, C., Cancer chemoprevantivein vitro activities of isoflavones isolated fromIris germanica.Planta Med., 69, 15–20 (2003).PubMedCrossRefGoogle Scholar
  22. Yamaki, K., Kim, H. D., Ryu, N., Kim, P. Y., Shin, H. K., and Ohuchi, K., Effects of naturally occurring isoflavones on prostaglandin E2 production.Planta Med., 68, 97–100 (2002).PubMedCrossRefGoogle Scholar
  23. Yamazaki, T., Nakajima, Y., Niho, Y., Hosono, T., Kurashige, T., Kinjo, J., and Nohara, T., Pharmacological studies onPuerariae flos III: protective effects of kakkalide on ethanolinduced lethality and acute hepatic injury in mice.J. Pharmacy & Pharmacology, 49, 831–833 (1997).Google Scholar
  24. Yasukawa, K., Takido, M., Takeuchi, M., and Nakagawa, S., Effect of chemical constituents from plants on 12-O- tetradecanoylphorbol-13-acetate induced inflammation in mice.Chem. Pharm. Bull., 37, 1071–1073 (1989).PubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2004

Authors and Affiliations

  1. 1.Department of Pharmacognosy, Faculty of PharmacyAin Shams UniversityAbbassia, CairoEgypt

Personalised recommendations