Archives of Pharmacal Research

, Volume 24, Issue 5, pp 431–436 | Cite as

Antioxidative effects ofCichorium intybus root extract on LDL (Low Density Lipoprotein) oxidation

Research Article Medicinal Chemistry & Natural Products


The water extract ofCichorium intybus (WECI) showed a remarkable antioxidative effect on LDL, and inhibitory effects on the production of thiobarbituric acid reactive substance and the Degradation of fatty acids in LDL. Vitamin E and unsaturated fatty acids in LDL were protected by adding WECI from the effects of metal catalyzed LDL oxidation. From the results obtained, we conclude that LDL oxidation is inhibitedin vitro by the addition of WECI, and that LDL is protected by WECI from oxidative attack, as shown by agarose gel electrophoresis.

Key words

Antioxidative activity Cichorium intybus (Compositae) LDL oxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brown, V. B., Lipoproteins.Heart Disease and Stroke 1, 20–26 (1992).PubMedGoogle Scholar
  2. Caslake, M. J., Packard, C. J., and Shepherd, J., Plasma triglyceride and LDL metabolism.European Journal of Clinical Investigation, 22, 96–108 (1992).PubMedCrossRefGoogle Scholar
  3. Choi, J. H., Son, H. S., Kim, S. H., and Kim, T. W., Fatty acid composition and functional properties of LDL and oxidized LDL from human plasma.Journal of Korean Society Food Nutrition, 23, 402–408 (1994).Google Scholar
  4. Esterbauer, H., Striegl, G., and Puhl, H., The role of vitamin E and carotenoids in preventing oxidation of LDL. Annual NY Academic Science, 570, 254–256 (1989).CrossRefGoogle Scholar
  5. Esterbauer, H., Waeg, C., and Jurgens, G., Biochemical, structural and functional properties of oxidized LDL.Chemical Research Toxicology, 3, 77–86 (1990).CrossRefGoogle Scholar
  6. Fielding, C. J., Lipoprotein receptors, plasma cholesterol metabolism, and the regulation of cellular free cholesterol concentration.The FASEB Journal, 6, 3162–3170 (1992).PubMedGoogle Scholar
  7. Fogelman, A. M., Warden, C., Harberland, M. E., and Edwards, P. A., Macrophage lipoprotein receptors.Journal of Cell Science Supplment 9, 135–143 (1988).Google Scholar
  8. Jessup, W., Scott, J., and Leaks, D. S., Alpha tocopherol consumption during LDL oxidation..Biochem. J., 265, 399–407 (1990).PubMedGoogle Scholar
  9. Jurgens, C., Hoff, H. F., and Esterbauer, H., Modification of human serum LDL by oxidation characterization and pathophysiological implication.Chemical Physiolo-gical Lipids, 45, 315–321 (1987).CrossRefGoogle Scholar
  10. Khalil, A. T., Adb, E. F., and Mansour, E. S., Guaianolides fromLactuca saligna.Planta Medica, 57–58, 190 (1991).PubMedCrossRefGoogle Scholar
  11. Ki, C. G., Yim, D. S., and Lee, S. Y., Biological activities of the root ofCichorium intybus.Natural Product Sciences, 5(4) 155–158 (1999).Google Scholar
  12. Kim, M. and Shin, H. K., The water-soluble extract of Chicory influences serum and liver lipid concentrations, cecal short-chain fatty acid concentrations and fecal lipid excretion inrats.Journal of Nutrition, 128(10) 1731–1736 (1998).PubMedGoogle Scholar
  13. Lim, W. G., Resources Botany, Press of Seo II Co. p. 151 (1996).Google Scholar
  14. Lowry, O. H. and Farr, A. L., Protein measurement with the Folin phenol reagent.J. Biol. Chem., 193, 265–275 (1951).PubMedGoogle Scholar
  15. Luc, G. and Fruchart, J. C., Oxidation of lipoproteins and atherosclerosis.American Journal of Clinical Nutrition 53, 206S-212S (1991).PubMedGoogle Scholar
  16. Palinski, W. and Rosenfeld, M. E., LDL undergoes oxidative modificationin vivo.Proceeding National Academy Science USA 86, 1372–1381 (1989).CrossRefGoogle Scholar
  17. Reddy, B. S., Possible mechanism by which pro-and prebiotics influence colon carcinogenesis and tumor growth.Journal of Nutrition, 129, 1478–1482 (1999).Google Scholar
  18. Sato, K. and Shimasaki, H., Free radical-mediated chain oxidation of LDL and its synergistic inhibition by vitamin E and C.Archieves Biochimical Biophysics, 279, 402–412 (1990).CrossRefGoogle Scholar
  19. Steinbrecher, U. P., Oxidation of human LDL results in derivatisation of lysine residues of apoprotein B by lipid peroxide decomposition products.J. Biol. Chem., 262, 3603–3612 (1987).PubMedGoogle Scholar
  20. Steinbrecher, U. P., Kwan, W. C., and Dirks, M., Recognition of oxidized LDL by scavenger receptor of macrophage results from derivatisation of apo B by products of fatty acid peroxidation.J. Biol. Chem., 264, 15216–15220 (1989).PubMedGoogle Scholar
  21. Ted, W., John, P. P., and Daniel, H., Cranberry extract inhibits low density lipoprotein oxidation..Life Science 62(24) 381–386 (1998).CrossRefGoogle Scholar
  22. Yang, C. Y., Gu, Z. W., Kim, T. W., Cotto, A. M., and Chan, L., Structure of apo B-100 of human LDL.Arteriosclerosis, 96–101 (1989).Google Scholar
  23. Yang, K. S. and Shim, J. M., Effect of Arctii Fructus on Low Density Lipoprotein Oxidation.Kor. J. Pharmacogn. 28(4) 275–279 (1997).Google Scholar
  24. Zafar, R. and Mujahid, A. S., Anti-hepatotoxic effects of root and root callus extracts ofCichorium intybus.Journal of Ethnopharmacology, 63(3), 227–231 (1998).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2001

Authors and Affiliations

  1. 1.Department of BiochemistryKangweon National UniversityChuncheonKorea
  2. 2.College of PharmacySookmyung Women’s UniversitySeoulKorea

Personalised recommendations