Advertisement

Archives of Pharmacal Research

, Volume 16, Issue 3, pp 191–195 | Cite as

Effects of n-Alkanols on the lateral diffusion of total phospholipid fraction extracted from brain membranes

  • In-Kyo Chung
  • Jung-Sook Kang
  • Il Yun
Research Articles

Abstract

We investigated the effects ofn-alkanols on the range and rate of the lateral diffusion of 1,3-di(1-pyrenyl)propane in the model membranes of total phospholipid fraction extracted from synaptosomal plasma membrane vesicles. n-Alkanols increased the range and rate of the lateral diffusion of 1,3-di(1-pyrenyl)propane in the bulk model membrane structures (inner+outer monolayers) and the potencies ofn-alkanols up to 1-nonanol increased by 1 order of magnitude as the carbon chain length increases by two carbon atoms. The cut-off phenomenon was reached at 1-decanol, where further increase in hydrocarbon length resulted in a decrease in the lateral diffusion. However, significant changes in the l′/l value were not observed by methanol (from 100 to 2500 mM), ethanol (from 25 to 800 mM), and 1-propanol (from 10 to 250 mM) over entire concentration.

Key words

n-Alkanols Fluorescence probe technique Lateral mobility Liposomes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Bartlett, G. R., Phosphorus assay in column chromatography.J. Biol. Chem., 234, 466–468 (1959).PubMedGoogle Scholar
  2. Chung, I. K., Kang, J. S. and Yun, I., The effect ofn-alkanols on the lateral diffusion of synaptosomal plasma membrane vesicles isolated from bovine cerebral cortex.Korean J. Pharmacol., 29, 157–163 (1993a).Google Scholar
  3. Chung, I. K., Kang, J. S., Kim, H. I., Kim, J. R. and Yun, I., Effects ofn-alkanols on the lateral diffusion of model membranes of total lipid fraction extracted from brain membranes.Arch. Oral Biotech. Res., 1, 1–7 (1993b).Google Scholar
  4. Franks, N. P. and Lieb, W. R., What is the molecular nature of general anesthetic target sites?Trends Pharmacol. Sci., 8, 169–174 (1987).CrossRefGoogle Scholar
  5. Goldstein, D. B., The effects of drugs on membrane fluidity.Ann. Rev. Pharmacol. Toxicol., 24, 43–64 (1984).CrossRefGoogle Scholar
  6. Gonzales, R. A. and Hoffman, P. L., Receptor-gated ion channels may be selective CNS targets for ethanol.Trends Pharmacol. Sci., 12, 1–3 (1991).PubMedCrossRefGoogle Scholar
  7. Harris, R. A., Baxter, D. M., Mitchel, M. A. and Hitzemann, R. J., Physical properties and lipid composition of brain membranes from ethanol tolerant-dependent mice.Mol. Pharmacol., 25, 401–409 (1984).PubMedGoogle Scholar
  8. Harris, R. A. and Bruno, P., Membrane disordering by anesthetic drugs: Relationship to synaptosomal sodium and calcium fluxes.J. Neurochem., 44, 1274–1281 (1985).PubMedCrossRefGoogle Scholar
  9. Harris, R. A. and Schroeder, F., Ethanol and the physical propertis of brain membranes.Mol. Pharmacol., 20, 128–137 (1981).PubMedGoogle Scholar
  10. Hirayama, F., Intramolecular excimer formation. I. Diphenyl and triphenyl alkanes.J. Chem. Phys., 42, 3163–3171 (1965).CrossRefGoogle Scholar
  11. Hitzemann, R. J., Harris, R. A. and Loh, H. H., Pharmacological, developmental, and physiological regulation of synaptic membrane phospholipids, In Kuo, J. F. (Ed.),Phospholipids and Cellular Regulation, CRC Press, Boca Raton, 1985, pp. 97–130.Google Scholar
  12. Jain, M. K. and Wu, N. M., Effect of small molecules on the dipalmitoyl lecithin liposomal bilayer. III. Phase transition in lipid bilayer.J. Membrane Biol., 34, 157–201 (1977).CrossRefGoogle Scholar
  13. Lee, N. M. and Smith, A. S., Ethanol, In Ho, I. K. (Ed.),Toxicology of CNS Depressants, CRC Press, Boca Raton, 1986, pp. 35–67.Google Scholar
  14. Lyon, R. C., McComb, J. A., Schreus, J. and Goldstein, D. B., A relationship between alcohol intoxication and the disordering of brain membranes by a series of short-chain alcohols.J. Pharmacol. Exp. Ther., 218, 669–675 (1981).PubMedGoogle Scholar
  15. Madeira, V. M. C. and Antunes-Madeira, M. C., Lipid composition of biomembranes: a complete analysis of sarcoplasmic reticulum phospholipids.Cienc. Biol. (Coimbra), 2, 265–291 (1976).Google Scholar
  16. Manevich, E. M., Koiv, A., Jarv, J., Molotkovsky, J. G. and Bergelson, L. D., Binding of specific ligands to muscarinic receptor alters the fluidity of membrane fragments from rat brain. A fluorescence polarization study with lipid-specific probes.FEBS Letters, 236, 43–46 (1988).PubMedCrossRefGoogle Scholar
  17. Oldfield, E. and Chapman, D., Dynamics of lipids in membranes: heterogeneity and the role of cholesterol.FEBS Letters, 23, 285–297 (1972).PubMedCrossRefGoogle Scholar
  18. Perlman, B. J. and Goldstein, D. B., Genetic influence on the central nervous system depressant and membrane-disordering actions of ethanol and sodium valproate.Mol. Pharmacol., 26, 547–552 (1984).PubMedGoogle Scholar
  19. Sanna, E., Concas, A., Serra, M., Santoro, G. and Biggio, G., Ex vivo bind of t-[35S]butylbicyclophosphorothionate: a biochemical tool study the pharmacology of ethanol at the γ-aminobutyric acid-coupled chloride channel.J. Pharmacol. Exp. Ther., 256, 922–928 (1991).PubMedGoogle Scholar
  20. Schachter, D., Fluidity and function of hepatocyte plasma membranes.Hepatology, 4, 140–151 (1984).PubMedCrossRefGoogle Scholar
  21. Shinitzky, M., Membrane Fluidity and Cellular Functions, In Shinitzky, M. (Ed.),Physiology of Membrane Fluidity, CRC Press, Boca Raton, 1986, pp. 1–39.Google Scholar
  22. Sweet, W. D. and Schroeder, F., Lipid domains and enzyme activity, In Aloia, R. C., Curtain, C. C. and Gordon, L. M. (Eds.),Advances in membrane fluidity, Alan R Liss Inc., New York, 1988, pp. 33–42.Google Scholar
  23. Vanderkooi, J. M. and Callis, J. B., Pyrene. A probe of lateral diffusion in the hydrophobic region of membranes.Biochemistry, 13, 4000–4006 (1974).PubMedCrossRefGoogle Scholar
  24. Yun, I. and Kang, J. S., The general lipid composition and aminophospholipid asymmetry of synaptosomal plasma membrane vesicles isolated from bovine cerebral cortex.Mol. Cells, 1, 15–20 (1990).Google Scholar
  25. Yun, I. and Kang, J. S., Transbilayer effects ofn-alkanols on the fluidity of phospholipid model membranes.Arch. Pharm. Res., 15, 152–161 (1992a).CrossRefGoogle Scholar
  26. Yun, I. and Kang, J. S., Transbilayer effects ofn-alkanols on the fluidity of total lipids extracted from synaptosomal plasma membrane vesicles.Korean J. Pharmacol., 28, 191–199 (1992b).Google Scholar
  27. Yun, I. and Kang, J. S., Effects of barbiturates on transbilayer fluidity domains of phospholipid model membrane monolayers.Korean J. Pharmacol., 28, 103–114 (1992c).Google Scholar
  28. Yun, I., Han, S. K., Baik, S. W., Kim, N. H., Kang, J. S., Chung, J. K. and Lee, E. J., Effects of local anesthetics on the fluidity of synaptosomal plasma membrane vesicles isolated from bovine brain.Korean J. Pharmacol., 24, 43–52 (1988).Google Scholar
  29. Yun, I., Kim, H. I., Hwang, T. H., Kim, J. R., Kim I. S., Chung, Y. Z., Shin, Y. H., Jung, H. O. and Kang, J. S., Effects of barbiturates on the fluidity of phosphatidylethanolamine model membranes.Korean J. Pharmacol., 26, 209–217 (1990a).Google Scholar
  30. Yun, I., Kim, Y. S., Yu, S. H., Chung, I. K., Kim, I. S., Baik, S. W., Cho, G. J., Chung,Y. Z., Kim, S. H. and Kang, J. S., Comparison of several procedures for the preparation of synaptosomal plasma membrane vesicles.Arch. Pharm. Res., 13, 325–329 (1990b).CrossRefGoogle Scholar
  31. Zachariasse, K. A., Intramolecular excimer formation with diarylalkanes as a microfluidity probe for sodium dodecyl sulphate micells.Chem. Phys. Letters, 57, 429–432 (1978).CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 1993

Authors and Affiliations

  • In-Kyo Chung
    • 1
  • Jung-Sook Kang
    • 2
  • Il Yun
    • 3
  1. 1.Department of Oral and Maxillofacial Surgery and Clinical Pharmacology Unit, College of Dentistry and Research Institute for Oral BiotechnologyPusan National UniversityPusanKorea
  2. 2.Department of Oral Biochemistry and Molecular Biology, College of Dentistry and Research Institute for Oral BiotechnologyPusan National UniversityPusanKorea
  3. 3.Department of Dental Pharmacology and Biophysics, College of Dentistry and Research Institute for Oral BiotechnologyPusan National UniversityPusanKorea

Personalised recommendations