Archives of Pharmacal Research

, Volume 21, Issue 2, pp 187–192 | Cite as

Synthesis of the 7,8-dihydro-7-deazapurine derivatives and their antibiotic activity

  • Sun Young Sung
  • Kwan Seog Sin
Research Articles


Thecis- andtrans-diastereomers of the 7,8-dihydro-7-deazapurine derivatives were synthesized from the corresponding diastereomers of 4-trans-cyano-2-methyl-3-phenyl-5-oxopyrrolidine (5), which were reduced from the 2-cis- and 2-trans-diastereomers of 4-trans-cyano-2-hydroxymethyl-3-phenyl-5-oxopyrrolidine (2)via tosylation, iodination and following elimination, respectively. The preparedcis- andtrans-diastereomers of 6-amino-2-mercapto-8-methyl-7-phenyl-7,8-dihydro-7(9H)-deazapurine (8) were transferred to the corresponding 2-methylthio-diastereomers9 and following desulfurization with Raney-nickel leaded to thecis-andtrans-diastereomers of 6-amino-8-methyl-7-phenyl-7,8-dihydro-7(9H)-deazapurine (10), respectively. The synthesized 7-deazapurine derivatives were tested for their antibiotic activity by the serial two-fold dilution method.

Key words

Deoxygenation 4-Cyano-2-methyl-3-phenyl-5-oxopyrrolidine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Anzai, K., Nakamura G. and Suzuki, S., Antibiotic substance produced in the culture broth of streptomyces tubercidus.J. Antibiotics (Tokyo) 10A, 201 (1957).Google Scholar
  2. Becker, H. G. O., Domschke, G., Berger W., Faust J, Schwetlick, K.,et al., Organikum, Deutscher Verlag der Wissenschaften, Berlin 1990.Google Scholar
  3. Cottam H. B., Kazimierczuk, Z., Geary, S., Mckernan P., Revankar, G. R. and Robins, R. K., Synthesis of 2,6-disubstituted 2′-deoxytubercidine prepared via the stereospecific sodium salt glycosylation procedure.J. Med. Chem., 28, 1461 (1985).PubMedCrossRefGoogle Scholar
  4. Girgis. N., Joergensen A., and Pedersen E. B., Phsophorous pentoxide in organic synthesis. XI, A new synthesis apporach to 7-deazahypoxanthines.Synthesis, 101 (1985).Google Scholar
  5. Joergensen A., El-bayouki, and Khairy A. M., Phosphorous pentoxide in organic synthesis. XXI, Synthesis of 7H-pyrrolo[2,3-d]pyrimidin-4(3H)-ones and N-aryl-7H-pyrrolo.[2,3-d]pyrimidine-4-amines.Chem. Scr., 25, 222 (1985).Google Scholar
  6. Morita T., Okamoto Y., and Sakurai, H., Chlorotrimethylsilane/Sodium iodide/Zn as a simple and convenient reducing system; One-pot deoxygenation of alcohols and ethers.Synthesis, 32 (1981).Google Scholar
  7. Nishimura H., Katakiri, K., Sato, K., Mayama, M., and Shimaoka N., Antibiotic substance extrated from the culture filtrate and mycelium ofStreptomyces toyocaensis.J. Antibiotics (Tokyo) 9A, 60 (1956).Google Scholar
  8. Pachaly, P., Kang, H. S. and Wahl, D., LDA-katalysierte diastereoselective Michael addition mit glycinderivativen: Synthese von 4-substituierten 3-Aryl-2-ethoxycarbonyl-5-oxo-pyrrolidine.Arch. Pharm. (Weinhein) 324, 989 (1991).CrossRefGoogle Scholar
  9. Perrin, D. D., Armarego W. L. F.,Purification of laboratory chemicals, 4th edition, Butter-worth-Heinemann, Oxford, 1996.Google Scholar
  10. Pichler H., Folkers G., Roth H. J., and Eger K., Synthesis of 7-unsubstituted 7-H-pyrrolo[2,3-d]pyrimidines.Liebigs Ann. Chem., 1486 (1986).Google Scholar
  11. Schick W., Pachaly, P., Kang H. S. and Wahl, D., Synthese von 7-Deazapurinen als potentielle purinanaloga.Arch. Pharm. (Weinheim) 326, 641 (1993).Google Scholar
  12. Seela, F. and H. D. Winkeler, 4-Amino-7-(β-D-arabiofuranosyl)pyrrolo[2,3-d]pyrimidin-the synthesis of ara tubercidin by phase transfer cataysis.Chem. Ber. 113, 2069–2080 (1980).CrossRefGoogle Scholar
  13. Seela F., and Muth H. P., Synthesis of 7-deaza-2′,3′-d 9deoxyhuanosine by deoxygenation of its 2′-deoxy-β-D-ribofuranoside.Liebigs Ann. Chem., 215 (1988).Google Scholar
  14. Sin K. S., Nam, J. U., Lee C. K. and Jun, J. G., Synthesis of 7-deazapurine.J. Pharm. Soc. Korea, 37, 228 (1993).Google Scholar
  15. Sin K. S., Kim N. H., Lee J. H., Sung S. T. and Pachaly P., Synthesis of 7-deazahypoxanthine and 7-deazaadenine derivatives.J. Pharm. Soc. Korea, 41, 181–186 (1997).Google Scholar
  16. Sinambela, J. M., Zimmermann W., Roth H. J., and Eger K., Amino acids as bifuntional synthons of pyrrol[1,2-a]- and-[2,3-d]annelate heterocycles.J. Heterocycl. Chem., 23, 393 (1986).CrossRefGoogle Scholar
  17. Tolman R. L., Robinson R. K. and Townsend L. B., Pyrrole[2,3-d]pyrimidine nucleoside antibiotics. Total synthesis and structure of toyocamycin, unamycin B, vengicide, antibiotic E-212, and sangivamycin (BA-90912).J. Am. Chem. Soc., 90, 524 (1968).PubMedCrossRefGoogle Scholar
  18. Tolman, R. L., Robinson, R. K., and Townsend, L. B., Pyrrolepyrimidine nucleosides III. The total synthesis and structure of toyocamycin, sangimycin, tubercidin and related derivatives.J. Am. Chem. Soc., 91, 2102 (1969).PubMedCrossRefGoogle Scholar
  19. Ueno, Y. and Omura S.,Microbial Chemistry, 127–129, Nankodo, Tokyo, Japan (1995).Google Scholar

Copyright information

© The Pharmaceutical Society of Korea 1998

Authors and Affiliations

  • Sun Young Sung
    • 1
  • Kwan Seog Sin
    • 1
  1. 1.College of PharmacyKangwon National UniversityChuncheonKorea

Personalised recommendations