Advances in Atmospheric Sciences

, Volume 16, Issue 2, pp 159–182 | Cite as

An ensemble forecast of the South China Sea monsoon

  • T. N. Krishnamurti
  • Mukul Tewari
  • Ed Bensman
  • Wei Han
  • Zhan Zhang
  • William K. M. Lau


This paper presents a generalized ensemble forecast procedure for the tropical latitudes. Here we propose an empirical orthogonal function-based procedure for the definition of a seven-member ensemble. The wind and the temperature fields are perturbed over the global tropics. Although the forecasts are made over the global belt with a high-resolution model, the emphasis of this study is on a South China Sea monsoon. Over this domain of the South China Sea includes the passage of a Tropical Storm, Gary, that moved eastwards north of the Philippines. The ensemble forecast handled the precipitation of this storm reasonably well. A global model at the resolution Triangular Truncation 126 waves is used to carry out these seven forecasts. The evaluation of the ensemble of forecasts is carried out via standard root mean square errors of the precipitation and the wind fields. The ensemble average is shown to have a higher skill compared to a control experiment, which was a first analysis based on operational data sets over both the global tropical and South China Sea domain. All of these experiments were subjected to physical initialization which provides a spin-up of the model rain close to that obtained from satellite and gauge-based estimates. The results furthermore show that inherently much higher skill resides in the forecast precipitation fields if they are averaged over area elements of the order of 4° latitude by 4° longitude squares.

Key words

Ensemble forecast Triangular truncation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beljaars, A., and M. Miller, 1990: A note concerning the evaporation from the tropical oceans: sensitivity of the ECMWF model to the transfer coefficient of moisture at low wind speed. ECMWF Research Department Technical Memo 170, ECMWF, Reading, 19 pp.Google Scholar
  2. Bounoa, L., and T.N. Krishnamurti, 1993: Influence of soil moisture on the Sahelian Climate Prediction I.Meteor. Atmos. Phys.,52, 183–203.CrossRefGoogle Scholar
  3. Businger, J.A., et al., 1971: Flux profile relationship in the atmospheric surface layer.J. Atmos. Sci.,28, 181–189.CrossRefGoogle Scholar
  4. Colucci, S.J., and D.P. Baumhefner, 1998: Numerical Prediction of the Onset of Blocking: A case study with forecast ensembles.Mon. Wea. Rev.,126, 773–784.CrossRefGoogle Scholar
  5. Ding, Y., et al., 1997: The South China Sea Monsoon Experiment (SCSMEX) Implementation Plan.Advances in Atmospheric Sciences,14, 255–270.CrossRefGoogle Scholar
  6. Gairola, R.M., and T.N. Krishnamurti, 1992: Rain rates based on SSM / I, OLR and raingauge data sets.J. Meteor. Atmos. Phys.,50, 165–174.CrossRefGoogle Scholar
  7. Harshvardan, and T.G. Corsetti, 1984: Longwave parameterization for the UCLA / GLAS GCM. NASA Tech. Memo 86072, Goddard Space Flight Center, Greenbelt, MD.Google Scholar
  8. Hoffman, R.N., and E. Kalnay, 1983: Lagged average forecasting, an alternative to Monte Carlo forecasting.Tellus,35A, 100–118.CrossRefGoogle Scholar
  9. Kanamitsu, M., et al., 1983: Description of the JMA operational spectral model.J. Meteor. Soc. Japan,61, 812–828.Google Scholar
  10. Kanamitsu, M., 1975: On numerical weather prediction over a tropical belt. Report No. 75-1, Dept. of Meteorology, Florida State University, Tallahassee, FL 32306, pp. 1–282.Google Scholar
  11. Krishnamurti, T.N., et al., 1998: Organization of Convection and Monsoon Forecasts. Meteorology and Atmospheric Physics Riehl Special Volume (in press).Google Scholar
  12. Krishnamurti, T.N., et al., 1997: Physical Initialization and Hurricane Ensemble Forecast.Weather and Forecasting,12, 503–514.CrossRefGoogle Scholar
  13. Krishnamurti, T.N. et al., 1997: Physical Initialization.Atmosphere-Ocean,35, 369–398.Google Scholar
  14. Krishnamurti T.N. and H.S. Bedi, 1996: A brief review of Physical Initialization.Met. Atmos. Physics,60, 137–142.CrossRefGoogle Scholar
  15. Krishnamurti, T.N., et al., 1993: Physical Initialization using the SSM / I Rain Rates.Tellus,45A, 247–269.Google Scholar
  16. Krishnamurti, T.N., et al., 1991: Physical initialization for numerical weather prediction over the tropics.Tellus,43AB, 53–81.Google Scholar
  17. Krishnamurti, T.N. and H.S. Bedi, 1988: Cumulus parameterization and rainfall rates: Part III.Mon. Wea. Rev.,116, 583–589.CrossRefGoogle Scholar
  18. Krishnamurti, T.N., et al., 1983: Cumulus parameterization and rainfall rates, Part II.Mon. Wea. Rev.,111, 815–828.CrossRefGoogle Scholar
  19. Kuo, H.L., 1974: Further studies of the parameterization of the influence of cumulus convection on large scale flow.J. Atmos. Sci.,31, 1232–1240.CrossRefGoogle Scholar
  20. Lacis, A.A. and J.E. Hansen, 1974: A parameterization of the absorption of solar radiation in the earth’s atmosphere.J. Atmos. Sci.,31, 118–133.CrossRefGoogle Scholar
  21. Lau, K.-M. et al., 1998: Hydrological processes associated with the first transition of the Asian summer monsoon a pilot satellite study.Bull. Am. Meteor. Soc. (in press, September issue).Google Scholar
  22. Lau, K.-M., 1997: South China Sea Monsoon experiment observed from satellites.EOS Transactions, AGU,78, 599–603.CrossRefGoogle Scholar
  23. Legier, D.M., 1983: Empirical orthogonal function analysis of wind vectors over the tropical Pacific Region.Bull. Amer. Meteor. Soc.,64, 234–241.CrossRefGoogle Scholar
  24. Leith, C.E., 1974: Theoretical skill of Monte Carlo forecasts.Mon. Wea. Rev.,102, 409–418.CrossRefGoogle Scholar
  25. Louis, J.F., 1979: A parametric model of vertical eddy fluxes in the atmosphere.Boundary Layer Meteorology,17, 187–202.CrossRefGoogle Scholar
  26. Moorthi, S. and A. Arakawa, 1985: Baroclinic Instability with Cumulus Heating.Mon. Wea. Rev.,42, 2007–2031.Google Scholar
  27. Mullen, S.L. and D.P. Baumhefner, 1994: Monte Carlo simulations of explosive cyclogenesis.Mon. Wea. Rev.,122, 1548–1567.CrossRefGoogle Scholar
  28. Nitta, T. and M. Yanai, 1969: A note on the barotropical instability of the tropical easterly current.J. Meteor. Soc. Japan,47, 127–130.Google Scholar
  29. Olson, W.S., et al., 1990: Recommended algorithms for the retrieval of rainfall rates in the tropics using SSM / I (DMSP-F8). Manuscript, University of Wisconsin, Madison, 10pp.Google Scholar
  30. Palmer, T.N., et al., 1992: Ensemble prediction, ECMWF Tech. Memo, 188 [Available from ECMWF, Shinfield Park, Reading RG29AX, United Kingdom].Google Scholar
  31. Tiedke, M., 1984: The sensitivity of the time-mean large-scale flow to cumulus convection in the ECMWF model. Workshop on Convection in large-scale numerical models. ECMWF, 28 Nov. — 1 Dec. 1983, 297–316.Google Scholar
  32. Toth, Z. and E. Kalney, 1993: Ensemble forecasting at NMC. The generation of perturbations.Bull. Amer. Meteor. Soc.,74, 2317–2330.CrossRefGoogle Scholar
  33. Wallace, J.M., et al., 1983: Reduction of systematic forecast errors in the ECMWF model through the introduction of envelope orography.Quart. J. Roy. Met. Soc.,109, 683–718.CrossRefGoogle Scholar
  34. Yanai, M. et al., 1973: Deformation of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets.J. Atmos. Sci.,30, 611–627.CrossRefGoogle Scholar
  35. Zhang, Z. and T.N. Krishnamurti, 1997: On Ensemble Forecasting of Hurricane Tracks.Bull. Amer. Meteor. Soc.,74, 2785–2795.CrossRefGoogle Scholar

Copyright information

© Advances in Atmospheric Sciences 1999

Authors and Affiliations

  • T. N. Krishnamurti
    • 1
  • Mukul Tewari
    • 1
  • Ed Bensman
    • 1
  • Wei Han
    • 1
  • Zhan Zhang
    • 1
  • William K. M. Lau
    • 2
  1. 1.Department of MeteorologyFlorida State UniversityTallahassee
  2. 2.Climate and Radiation Branch, Code 913NASA Goddard Space Flight CenterGreenbelt

Personalised recommendations