Advertisement

KSME Journal

, Volume 1, Issue 2, pp 133–139 | Cite as

A study on the dynamic characteristics of the Korean Yi-dynasty bell type structure

  • Suk Choo Chung
  • Chang Duck Kong
  • Young Ha Yum
Article
  • 103 Downloads

Abstract

The dynamic characteristics of the Korean Yi-dynasty bell type structure, including the acoustic effects, are analyzed both theoretically and experimentally. The numerical solutions of natural frequencies and mode shape for membrane and flexural behavior are obtained by using the NASTRAN program for the finite element method with plate shell elements of triangular and quadrilateral types. Test bells, A and B types similar to the Kap-Sa bell in Kong-Ju chosen among typical Korean Yi-dynasty bells, are manufactured on different scales to the original bell. To consider the effects of the variation of the structural dimension on the dynamic response, these bells are analyzed with respect to the variation of the thickness of the wall and the bottom rim and the asymmetric Dang-Jwas. The impact method with the Fast Fourier Transform Analyzer is adopted to experimentally assess the dynamic response. Results are in good agreement with the numerical solutions.

Key Words

Bell Type Structure Dynamic Characteristics Acoustic Effect Mode Shape Finite Element Method 

Nomenclature

G1

Nodal points (i=1,2,3,4)

[K]

Stiffness matrix

[M]

Mass matrix

qi

Generalized coordinates (i=1,2,3,4,5,6)

u, v, w

Displacement local coordinate system

Xm

Material coordinate system

x, y, z

Local coordinate system

XG,YG,ZG

Global coordinate system

α, β, γ

Angles between local coordinate and diagonal line of quadrilateral elements

α1,α2,β1,β2

Rotation components

θm

Material coordinate rotations

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoki, I., Komatsuzawa, A. and Ise, M., 1970, “Effect of Local Loading on the Acoustical Property of Japanse Bell”, J. JAS, Vol. 26, No. 12, pp. 323–327.Google Scholar
  2. Arnold, R. N. and Warburton, G. B., 1949, “Flexural Vibrations of the Walls of Thin Cylindrical shell having Freely Supported Ends”, Proc.Roy.soc., London, Vol. 17, pp. 238–256.Google Scholar
  3. Bath, K. J. and Wilson, E. L., 1976, “Numerical methods in Finite Element Analysis”, Englewood Chiffs., N.J. Prentice-Hall, pp. 212–230.Google Scholar
  4. Curtiss, A.N. and Gainnini, G.M., 1935, J.A.S.A., Vol. 5, pp. 293, 1933, J.A.S.A., Vol. 24, p. 245Google Scholar
  5. Flugge, W., 1962, “Stress in Shells”, Springer-Vertag, Berlin, 2nd 3d., pp. 150–157.Google Scholar
  6. Goleberg, J.E. and Bogdanoff, J.L., 1960, “On the Calculation of the Axisymmetric Modes and Frequencies of Conical Shells”, J. Acoust. Soc. Amer., Vol. 5, pp. 130–145.Google Scholar
  7. Jahangir Ansari, 1983. “Dynalic Reponse Analysis of Shells of Revolution due to External Forces using F.E.M.”, S.N.U. Ph.D. Thesis.Google Scholar
  8. Jones, A.T., 1928, Phys. Rev., Vol. 31 pp. 1092, 1920, Phys. Rev., Vol. 16, pp. 247–252.CrossRefGoogle Scholar
  9. Jones, R.E. and Strome, D.R., 1966, “Direct Stiffness Method Analysis of Shells of Revolution Utilizing Curved Element”, AIAA J., Vol. 16, pp. 390–399.Google Scholar
  10. Kalins, A., 1964, “Free Vibration of Rotationally Symmetric Shell”, J.Acoust. Soc. Amer., Vol. 9, pp. 270–283.Google Scholar
  11. Leissa, A.W., 1978, “Vibration of Shell”, NASA SP-288.Google Scholar
  12. Love, A.E.H., 1888, “The small Free Vibrations and Deformation of a Thin Elastic Shell”, Phill Trans. Royal Soc. London, England (A), Vol. 179, pp. 491–546.CrossRefGoogle Scholar
  13. MSC/NASTRAN Primer, 1982, Static & Normal Modes Analysis.Google Scholar
  14. NASTRAN Theoretical Manual, 1980, NASA Sp-221, Section 5.3Google Scholar
  15. Novozhilov, V.V., 1964, “The Theory of Thin Elastic Shells”, P.Noordhoff Lts, Chap. 8, pp. 260–351.Google Scholar
  16. Novozhilov, V.V., 1953, “Foundations of Nonlinear Theory of Elasticity”, Graylock Press, pp. 47–53.Google Scholar
  17. Oden, L., 1972, “Finite Element of Nonlinear continua”, McGraw-Hill, pp. 5–20.Google Scholar
  18. Percy, J. H., Pian, T.H.H., Klein, S. and Navaratna, R., 1965, “Application of Matrix Displacement Method to Linear Elastic Analysis of Shells of Revolution”, AIAA J., Vol. 8, pp. 231–240.Google Scholar
  19. Rayleigh, J.W.S., 1884, “The Theory of Sound”, Dover Pub., London, Vol. 1, pp. 126–132.Google Scholar
  20. Sen, S.K. and Gould, P.L., 1974, “Free Vibration of Shells of Revolution Using F.E.M.”, J. Eng. Mech., ASCE, EM2, Vol. 3, pp. 261–273.Google Scholar
  21. Timoshenko, S. and Woinowsky-Krieger, 1959, “Theory of Plates and Shells”, McGraw-Hill, New York, Chap. 6 pp. 185–189Google Scholar
  22. Wilkison, J.H., 1965, “The Algebraic Eigenvalue Problem” London Oxford Press, pp. 146–153.Google Scholar
  23. Yamashita, K. and Aoak, L., 1932, “On the Frequencies of the Sound Emitted by Japanese Hanging Bells”, Memoirs of the Coll of Sci. Kyoto Univ., Series A, Vol. 15, pp. 572–583.Google Scholar
  24. Yamashita, K. and Aoki, L., 1934, “The Effect of the Length on the Frequencies of Sound Emitted by a Circular Cylindrical with a Hemispherical Cap”, Memoirs of the Coll of Sci. Kyoto Univ., Vol. 17, pp. 381–392.Google Scholar
  25. Yum, Y.H., Lee, J.M. and Kwak, J.K., 1980, “A Study on the Vibration characteristics of Bell Structure”, Korean Bell Study Report, Bum Jong, No. 3, pp. 31–38.Google Scholar
  26. Yum, Y.H., Lee, J.M. and Kwak, J.K., “A Study on the natural Frequencies and Stress Analysis of a Cylindrical Shell”, Korean Bell Study Report, Bum Jong, No. 3, pp. 19–30.Google Scholar
  27. Yum, Y.H., Kwak, J.K. and Chung, S.C., 1982, “A Study on the Natural Frequencies of Sound Emitted by Thin Conical Shells”, KSME Trans., Vol. 6, No. 4, pp. 353–360.Google Scholar
  28. Yum, Y.H. and Kim, S.H., 1981, “Study on the Bell Structure”, Korean Bell Study Report, Bum Jong, No. 4, pp. 55–68.Google Scholar

Copyright information

© The Korean Society of Mechanical Engineers (KSME) 1987

Authors and Affiliations

  • Suk Choo Chung
    • 1
  • Chang Duck Kong
    • 2
  • Young Ha Yum
    • 3
  1. 1.Department of Machine Design EngineeringKyonggi National Open UniversitySeoulKorea
  2. 2.Dae Jeon Machine DepotDaejeonKorea
  3. 3.Dapartment of Machine Design EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations