Qualitative Theory of Dynamical Systems

, Volume 4, Issue 2, pp 125–137 | Cite as

On properties of the vertical rotation interval for twist mappings II

  • Salvador Addas-Zanata


In this paper we consider twist mappings of the tours,\(\bar T:T^2 \to T^2 \), and their vertical rotation intervals\(\rho v(T) = [\rho _v^ - ,\rho _v^ + ]\), which are closed intervals such that for any\(\omega \in ]\rho _v^ - ,\rho _v^ + [\) there exists a compact\(\bar T - invariant\) set\(\bar Q_\omega \) with\(\rho v(\bar x) = \omega \) for any\(\bar x \in \bar Q_\omega \), where\(\rho v(\bar x)\) is the vertical rotation number of\(\bar x\). In case ω is a rational number,\(\bar Q_\omega \) is a periodic orbit (this study began in [1] and [2]). Here we analyze how\(\rho _v^ - \) and\(\rho _v^ + \) behave as we perturb\(\bar T\) when they assume rational values. In particular we prove that, for an interesting class of mappings, these functions are locally constant at rational values.

Key Words

twist mappings vertical rotation set topological methods, saddlenodes analyticity bifurcations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Addas-Zanata,On the dynamics of twist maps of the torus, (2000), Doctoral Thesis. In Portuguese. IMEUSP.Google Scholar
  2. 2.
    S. Addas-Zanata,On the existence of a new type of periodic and quasi-periodic orbits for twist maps of the torus, Nonlinearity15 (5) (2002), 1399–1416.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    S. Addas-Zanata,A note on a standard family of twist maps. Preprint (2002).Google Scholar
  4. 4.
    S. Addas-Zanata,On properties of the vertical rotation interval for twist mappings. Preprint (2002).Google Scholar
  5. 5.
    S. Addas-Zanata andC. Grotta-Ragazzo,On the stability of some periodic orbits of a new type for twist maps, Nonlinearity15 (5) (2002), 1385–1397.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    S. Addas-Zanata andC. Grotta-Ragazzo,Conservative dynamics: Unstable sets for saddle-center loops, Journal of Differential Equations117 (1) (2003), 118–146.MathSciNetGoogle Scholar
  7. 7.
    S. Aubry andP. Le Daeron,The discrete Frenkel-Kontorova model and its extensions,Physica D8 (1983), 381–422.CrossRefMathSciNetGoogle Scholar
  8. 8.
    P. Boyland,Bifurcations of circle maps: Arnol'd tongues, bistability and rotation intervals, Comm. Math. Phys.106 (1986), 353–381.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    P. Boyland,Rotation sets and Morse decomposition in twist maps, Ergod. Th. & Dynam. Sys.8* (1988), 33–61.MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    P. Brunovsky,On one-parameter families of diffeomorphisms, Comment. Math. Univ. Carolinae11 (1970), 559–582.MATHMathSciNetGoogle Scholar
  11. 11.
    J. Carr,Applications of centre manifold theory New York-Berlin: Springer-Verlag (1981).MATHGoogle Scholar
  12. 12.
    H. E. Doeff,Rotation Measures for homeomorphisms of the torus homotopic to a Dehn twist, Ergod. Th. & Dynam. Sys.17 (1997), 575–591.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    J. Franks,Realizing rotation vectors for torus homeomorphisms, Trans. Amer. Math. Soc.311 (1989), 107–115.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    C. Grotta Ragazzo,Irregular Dynamics and Homoclinic orbits to Hamiltonian saddle-centers, Comm. Pure Appl. MathL (1997), 105–147.CrossRefMathSciNetGoogle Scholar
  15. 15.
    C. Grotta Ragazzo,On the Stability of Double Homoclinic Loops, Comm. Math. Phys.184 (1997), 251–272.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    A. Katok,Some remarks on the Birkhoff and Mather twist map theorems, Ergod. Th. & Dynam. Sys.2 (1982), 185–194.MATHMathSciNetGoogle Scholar
  17. 17.
    P. Le Calvez,Construction d'orbites périodiques par perturbation d'un difféomorphisme de l'anneau déviant la verticale, C. R. Acad. Sci. Parist 321 (1995), 463–468.MATHGoogle Scholar
  18. 18.
    L. M. Lerman,Hamiltonian systems with loops of a separatrix of a saddle-center, Sel. Math. Sov.10 (1991), 297–306.MathSciNetGoogle Scholar
  19. 19.
    J. N. Mather,Existence of quasi-periodic orbits for twist homeomorphisms of the annulus, Topology21 (1982), 457–467.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    A. Mielke, P. Holmes andO. O'Reilly,Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle center, J. Dyn. Diff. Eqns.4 (1992), 95–126.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    J. Moser,Stable and Random Motions in Dynamical Systems, Princeton: Princeton University Press. (1973).MATHGoogle Scholar
  22. 22.
    B. Schmitt,Sur les plongements, admettant zéro ou un point fixé, du disque dans le plan, Topology14 (1975), 357–365.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser-Verlag 2004

Authors and Affiliations

  1. 1.Instituto de Matemática e EstatísticaUniversidade de São PauloSao PauloBrazil

Personalised recommendations