Science in China Series B: Chemistry

, Volume 43, Issue 6, pp 587–599 | Cite as

Catalytic reaction mechanism of L-lactate dehydrogenase: anab initio study

  • Hou Ruobing 
  • Chen Zhida 
  • Yi Xianghui 
  • Bian Jiang 
  • Xu Guangxian 


Studies on the catalytic reaction mechanism of L-lactate dehydrogenase have been carried out by using quantum chemical ab initio calculation at HF/6-31G* level. It is found that the interconversion reaction of pyruvate to L-lactate is dominated by the hydride ion Hr transfer, and the transfers of the hydride ionH r and protonH r are a quasi-coupled process, in which the energy barrier of the transition state is about 168.37 kJ/mol. It is shown that the reactant complex is 87.61 kJ/mol lower, in energy, than the product complex. The most striking features in our calculated results are that pyridine ring of the model cofactor is a quasi-boat-like configuration in the transited state, which differs from a planar conformation in some previous semiempirical quantum chemical studies. On the other hand, the similarity in the structure and charge between theH r transfer process and the hydrogen bonding with lower barrier indicates that the Hr transfer process occurs by means of an unusual manner. In addition, in the transition state the electrostatic interaction between the substrate and the active site of LDH is quite strong and the polarization of the carbonyl in the substrate is gradually enhanced accompanying the formation of the transition state. These calculated results are well in accord with the previous experimental studies, and indicate that the charge on the hydride ion Hr is only +0.13e in the transition state, which is in agreement with the reported semiempirical quantum chemical calculations.


L-lactate dehydrogenase ob initio calculation reaction mechanism transition state enzymatic catalytic reaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holbrook, J. J., Liljas, A., Steindel, S. J. et al., The Enzymes, 3rd ed., Vol. 11, New York: Academic Press, 1975, 191.Google Scholar
  2. 2.
    Clarke, A. R., Wigley, D. B., Chia, W. N. et al., Site-directed mutagenesis reveals role of mobile arginine residue in lactate dehydrogenase, Nature (London), 1986, 324: 699.CrossRefGoogle Scholar
  3. 3.
    Clarke, A. R., Wilks, H. M., Barstow, D. A. et al., An investigation of the contribution made by the carboxylate group of an active site histidine-aspartate couple to binding and catalysis in lactate dehydrogenase, Biochemistry, 1988, 27: 1617.CrossRefGoogle Scholar
  4. 4.
    Anderson, V. E., LaReau, R. D., Hydride transfer catalyzed by lactate dehydrogenase displays absolute stereospecificity at C4 of the nicotinamide ring, J. Am. Chem. Soc., 1988, 110: 3695.CrossRefGoogle Scholar
  5. 5.
    Adams, M. J., Buehner, M., Chandrasekhar, K. et al., Structure-function relationships in lactate dehydrogenase, Proc. Nat. Acad. Sci. USA, 1973, 70(7): 1968.CrossRefGoogle Scholar
  6. 6.
    Clarke, A. R., Atkinson, T., Holbrook, J. J., From analysis to synthesis: new ligand binding sites on the lactate dehydrogenase framework, Part I, TIBS(Trends in Biochemical Sciences), 1989, 14: 101.CrossRefGoogle Scholar
  7. 7.
    Deng, H., Zheng, J., Burgner, J. et al., Molecular properties of pyruvate bound to lactate dehydrogenase: A Raman spectroscopic study, Proc. Natl. Acad. Sci. USA, 1989, 86: 4484.CrossRefGoogle Scholar
  8. 8.
    Wu, Y. D., Houk, K. N., Theoretical evaluation of conformational preference of NAD+ and NADH: An approach to understanding the stereospecificity of NAD+ and NADH-dependent dehydrogenase, J. Am. Chem. Soc., 1991, 113: 2353.CrossRefGoogle Scholar
  9. 9.
    Wilkie, J., Williams, I. H., Transition-state structural variation in a model for carbonyl reduction by lactate dehydrogenase: computational validation of empirical predictions based upon Albery-More O’ Ferrall-Jencks diagrames, J. Am. Chem. Soc., 1992, 114(13): 5423.CrossRefGoogle Scholar
  10. 10.
    Andrés, J., Moliner, V., Krechl, J. et al., A PM3 quantum chemical study of the pyruvate reduction mechanism catalyzed by lactate dehydrogenase, Bioorg. Chem., 1993, 21(3): 260.CrossRefGoogle Scholar
  11. 11.
    Andrés, J., Moliner, V., Safont, V. S., Theoretical kinetic isotope effects for the hydride-transfer step in lactate dehydrogenase, J. Chem. Soc. Faraday Trans., 1994, 90(12): 1703.CrossRefGoogle Scholar
  12. 12.
    Andrés, J., Moliner, V., Krechl, J. et al., Transition state structure for the molecular mechanism of lactate dehydrogenase enzyme, J. Chem. Soc. Perkin Trans.2, 1995, 91: 1551.CrossRefGoogle Scholar
  13. 13.
    Gelpi, J. L., Jackson, R. M., Holbrook, J. J., Electrostatic interaction energies in lactate dehydrogenase catalysis, J. Chem. Soc. Faraday Trans., 1993, 89(15): 2707.CrossRefGoogle Scholar
  14. 14.
    Ranganathan, S., Gready, J. E., Mechanistic aspects of biological redox reactions involving NADH, Part 5 -AM1 transition- state studies for the pyruvate-L-lactate interconversion in L-lactate dehydrogenase, J. Chem. Soc. Faraday Trans., 1994, 90(14): 2047.CrossRefGoogle Scholar
  15. 15.
    Ranganathan, S., Gready, J. E., Hybride quantum and molecular mechanical(QM/MM) studies on the pyruvate to L-lactate interconversion in L-lactate dehydrogenase, J. Phys. Chem. B, 1997, 101: 5614.CrossRefGoogle Scholar
  16. 16.
    Almarsson, Ö., Bruice, T. C., Evaluation of the factors influencing reactivity and stereospecificity in NAD (P)H dependent dehydrogenase enzymes, J. Am. Chem. Soc., 1993, 115: 2125.CrossRefGoogle Scholar
  17. 17.
    White, J. L., Hackert, M. L., Buehner, M. et al., A comparison of the structures of apo dogfish M4 lactate dehydrogenase and its ternary complexes, J. Mol. Biol., 1976, 102(4): 759.CrossRefGoogle Scholar
  18. 18.
    Eventoff, W., Rossmann, M. G., Taylor, S. S. et al., Structural adaptations of lactate dehydrogenase isozymea, Proc. Natl. Acad. Sci. USA, 1977, 74(7): 2677.CrossRefGoogle Scholar
  19. 19.
    Price, N. C., Stevens, L., Fundamentals of Enzymology, 2nd ed., New York: Oxford University Press, 1989, 235, 237.Google Scholar
  20. 20.
    Frisch, M. J., Trucks, G. W., Schlegel, H. B. et al., Gaussian94 (Revision A.1), Pittsburgh PA: Gaussian Inc., 1994–1995.Google Scholar
  21. 21.
    Frisch, M. J., Frisch, Æ, Foresman, J. B., Gaussian 94 Users Reference., Pittsburgh PA: Gaussian Inc., 1995, 68, 112.Google Scholar
  22. 22.
    Cerius2 Modeling Evironment, User’ s Reference, Release2.0, Biosym/Molecular Simulations, 1995.Google Scholar
  23. 23.
    Cleand, W. W., Low-barrier hydrogen bonds and low fractionation factor bases in enzymatic reactions, Biochemistry, 1992, 31: 317.CrossRefGoogle Scholar
  24. 24.
    Schiøtt, B., Inversen, B. B., Madsen, G. K. H. et al., On the electronic nature of low-barrier hydrogen bonds in enzymatic reactions, Proc. Natl. Acad. Sci. USA, 1998, 95: 12799.CrossRefGoogle Scholar
  25. 25.
    Deng, H., Zheng, J., Clarke, A. et al., Source of catalysis in the lactate dehydrogenase system, ground-state interaction in the enzyme-substrate complex, Biochemistry, 1994, 33(8): 2297.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2000

Authors and Affiliations

  • Hou Ruobing 
    • 1
    • 2
  • Chen Zhida 
    • 1
    • 3
  • Yi Xianghui 
    • 2
  • Bian Jiang 
    • 1
  • Xu Guangxian 
    • 1
    • 3
  1. 1.State Key Laboratory of Rare Earth Materials Chemistry and Applications, Department of ChemistryPeking UniversityBeijingChina
  2. 2.College of Chemistry and Life ScienceGuangxi Normal UniversityGuilinChina
  3. 3.PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic ChemistryPeking UniversityBeijingChina

Personalised recommendations