Qualitative Theory of Dynamical Systems

, Volume 2, Issue 1, pp 67–78 | Cite as

Melnikov functions and Bautin ideal

  • Robert Roussarie


The computation of the number of limit cycles which appear in an analytic unfolding of planar vector fields is related to the decomposition of the displacement function of this unfolding in an ideal of functions in the parameter space, called the Ideal of Bautin. On the other hand, the asymptotic of the displacement function, for 1-parameter unfoldings of hamiltonian vector fields is given by Melnikov functions which are defined as the coefficients of Taylor expansion in the parameter. It is interesting to compare these two notions and to study if the general estimations of the number of limit cycles in terms of the Bautin ideal could be reduced to the computations of Melnikov functions for some 1-parameter subfamilies.

Key Words

Cyclicity Melnikov function desingularization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Bierstone, P. Milman,Semi analytic and sub analytic sets, Publ. Math. IHES,67 (1988), pp. 5–42.MATHMathSciNetGoogle Scholar
  2. 2.
    Z. Denkowska, S. Lojasiewicz, J. Stasica,Certaines propriétés élémentaires des ensembles sous-analytiques, Bull. Acad. Sci. Pol.,27 (1979), pp. 525–527,Sur le théorème du complémentaire pour les ensembles sous-analytiques. ibidem, pp. 537–539.Google Scholar
  3. 3.
    Z. Denkowska, J. Stasica,Ensembles sous analytiques à la polonaise, Preprint, Krakow (1986).Google Scholar
  4. 4.
    J.-P. Françoise,Géométrie analytique et Systèmes dynamiques, Presses Universitaires de France (1995), pp. 1–249.Google Scholar
  5. 5.
    J.-P. Françoise,Successive derivatives of a first return map, application to the study of quadratic vector fields, Erg. Th. and Dyn. Sys.16,n o 1 (1996), pp. 87–96.MATHGoogle Scholar
  6. 6.
    J.-P. Françoise, C.C. Pugh,Keeping track of limit cycles, J. Diff. Eq.65 (1986), pp. 139–157.MATHCrossRefGoogle Scholar
  7. 7.
    J.-P. Françoise, R. Pons,Computer Algebra methods and the stability of differential equations, Random and Comput. Dynam.3,n o 4 (1995), pp. 265–287.MATHMathSciNetGoogle Scholar
  8. 8.
    J.-P. Françoise, Y. Yomdin,Berstein inequality and applications to analytic geometry and differential equations, J. Funct. Anal.146 n o 1 (1997), pp. 185–206.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    A.M. Gabrielov,Projections of semi-analytic sets, Functional Anal. Appl.2 (1968), pp. 282–291.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    H. Hironaka,Resolution of singularities of an algebraic variety over a field of characteristic zero I, II, Ann. of Math.,79, (1964), pp. 109–203, 205–326.Introduction to real-analytic sets and real analytic map, Instituto Mat. Dell’Universita di Pisa (1973).CrossRefMathSciNetGoogle Scholar
  11. 11.
    S. Losjasiewicz,Ensembles semi-analytiques, preprint IHES (1965).Google Scholar
  12. 12.
    J. Milnor,Singular points of complex hypersurfaces, Annals of Math. Studies,61, (1968) pp. 1–122.Google Scholar
  13. 13.
    R. Roussarie,Cyclicité finie des lacets et des points cuspidaux, Nonlinearity 2 (1989) pp. 73–117.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    R. Roussarie,Bifurcations of planar vector fields and Hilbert’s Sixteenth Problem, Progress in Mathematics Vol.164, Birkhäuser ed. (1998), pp. 1–204.MathSciNetGoogle Scholar
  15. 15.
    S. Yakovenko,A geometric proof of the Bautin Theorem, Amer. Math. Soc. Transl.n o 2 Vol.165, (1995), pp. 203–219.MathSciNetGoogle Scholar

Copyright information

© Birkhäuser-Verlag 2001

Authors and Affiliations

  1. 1.Laboratoire de Topologie, U.M.R. 5584 du C.N.R.S.Université de BourgogneDijon CedexFrance

Personalised recommendations