Archives of Pharmacal Research

, Volume 29, Issue 11, pp 1006–1017 | Cite as

Comparison of some 3-(substituted-benzylidene)-1, 3-dihydro-indolin derivatives as ligands of tyrosine kinase based on binding mode studies and biological assay

  • Süreyya Ölgen
Articles Drug Development


A series of 3-(substituted-benylidene)-1, 3-dihydro-indolin-2-one, 3-(substituted-benylidene)-1, 3-dihydro- indolin-2-thione and 2, 2′-dithiobis 3-(substituted-benylidene)-1, 3-dihydro-indole derivatives was investigated as inhibitor of p60c-Src tyrosine kinase by performing receptor docking studies and inhibitory activity toward tyrosine phosphorylation. Some compounds were shown to be docked at the site, where the selective inhibitorPP1 [1-tert-Butyl-3-p-tolyl-1H-pyrazolo[3,4-d]pyrimidine-4-yl-amine] was embedded at the enzyme active site. Evaluation of all compounds for the interactions with the parameters of lowest binding energy levels, capability of hydrogen bond formations and superimposibility on enzyme active site by docking studies, it can be assumed that 3-(substituted- benzylidene)-1, 3-dihydro-indolin-2-one and thione derivatives have better interaction with enzyme active site then 2, 2′-dithiobis 3-(substituted- benzylidene)-1, 3-dihydro indole derivatives. The test results for the inhibitory activity against tyrosine kinase by Elisa method revealed that 3-(substituted-benylidene)-1, 3-dihydro- indolin-2-thione derivatives have more activity then 3-(substituted-benylidene)-1, 3-dihydro- indolin-2-one derivatives.

Key words

Protein tyrosine kinase p60c-Src N-Substituted indole derivatives Dock 4.0 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akaho, E., Fujikawa, C., Runion, H. I., Hill, C. R., and Nakaho, H., A study on docking mode of hiv protease and their inhibitors.J. Chem. Software, 5, 147–162 (1999).CrossRefGoogle Scholar
  2. Braud, E. M., Nourrisson, M. R., Tonnerre, A., Picot, C., LeBaut, G., Renard, P., Pfeiffer, B., and Tucker, G., Potential Inhibitors of angiogenesis. Part I: 3-(imidazoly-4 (5)-ylmethylene) indolin-2-ones.J. Enzyme Inhib. Med. Chem., 18, 243–252 (2003).PubMedCrossRefGoogle Scholar
  3. Coda, A. C., Invemizzi, A. G., Righetti, P. P., and Tacconi, G., (Z)-and (E)-Arylindene-1,3-dihydro indol-2-ones: configuration, conformation, and infrared carbonyl stretching frequencies.J. Chem. Soc. Perkin Trans, 2, 615–619 (1984).Google Scholar
  4. Cortes-Funes, H., Antiangiogenic agents.Drugs of Today, 38, 11–19 (2002).Google Scholar
  5. Ewing, T. J. A. and Kuntz, I. D., Critical evaluation of search algorithms for automated molecular docking and database screening.J. Comput. Chem., 18, 1175–1189 (1997).CrossRefGoogle Scholar
  6. Ewing, T. J. A., Makino, S., Skillman, A. G., and Kuntz, I. D., Dock 4.0: Search strategies for automated molecular docking flexible molecule databases.J. Comp.-Aid. Mol. Des., 15, 411–428 (2001).CrossRefGoogle Scholar
  7. Fabbro, D., Parkinson, D., and Matter, A., Protein tyrosine kinase inhibitors: new treatment modalities.Curr. Opin. Pharmacol. 2, 374–381 (2002).PubMedCrossRefGoogle Scholar
  8. Folkman, J., Anti-angiogenesis: new concepts for theraphy of solid tumors.Ann. Surg., 175, 409–416 (1972).PubMedCrossRefGoogle Scholar
  9. Folkman, J., Tumor angiogenesis.Adv. Cancer Res., 43, 175–203 (1985).PubMedCrossRefGoogle Scholar
  10. Fong, T. A. T., Shawver, L. K., App, H., Sun, L., Tang, C., Rice, A., Kim, Y. H., Schreck, R., Chen, J., Dowd, B., Suto, E., Vasile, S., Wang, X., Hirth, K. P., and McMahon, G., SU 5416: a potent and selective Flk-1/KDR kinase inhibitor that blocks Flk-1 phosphorylation, endotelhial cell mitogenesis, and tumor growth.Proc. Am. Assoc. Cancer Res., 39, 560–567 (1998).Google Scholar
  11. Fong, T. A. T., Shawer, L. K., Sun, L., Tang, C., App, H., Powell, T. J., Kim, Y. H., Schreck, R., Wang, X., Risau, W., Ullrich, A., Hirth, K. P., and McMahon, G., SU 5416: is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth for multiple tumor types.J. Cancer Res., 59, 99–106 (1999).Google Scholar
  12. Hamby, J. M. and Showalter, H. D. H., Small molecule inhibitors of tumor promoted angiogenesis, including protein kinase inhibitors.Pharmacol. Ther., 82, 169–193 (1999).PubMedCrossRefGoogle Scholar
  13. Hanke, J. H., Gardner, J. P., Dow, R. L., Changelian, P. S., Brissette, W. H., Weringer, E. J., Pollok, B. A., and Connelly, P. A., Discovery of a novel, potent and src family selective tyrosine kinase inhibitor.J. Biol. Chem., 271, 695–701 (1996).PubMedCrossRefGoogle Scholar
  14. Khols, D. W. D., Fry, D. W., and Kraker, A. J., Inhibitors of tyrosine kinase.Curr. Opin. Oncol., 9, 562–568 (1997).CrossRefGoogle Scholar
  15. Kuntz, I. D., Dock. 4.0 (University of California, San Francisco Web Site) (1998).Google Scholar
  16. Levitzki, A. and Grazit, A., Tyrosine kinase inhibition: an approach to drug development.Science, 267, 1782–1788 (1995).PubMedCrossRefGoogle Scholar
  17. Lyne, P. D., Structure-based virtual screening: an overview.Drug Discovery Today, 7, 1047–1055 (2002).PubMedCrossRefGoogle Scholar
  18. Meng, E. C., Scoichet, B. K., and Kuntz, I. D., Automated docking with grid-base evaluation.J. Comput. Chem., 13, 505–524 (1992).CrossRefGoogle Scholar
  19. Mohammadi, M., McMahon, G., Sun, L., Tang, C., Hirth, P., Yeh, B. K., Hubbard, S. R., and Schlessinger, J., Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors.Science, 276, 955–960 (1997).PubMedCrossRefGoogle Scholar
  20. Noonberg, S. B. and Benz, C. C., Tyrosine kinase inhibitors targeted to the epidermal growth factor receptor subfamily.Drugs, 59, 753–767 (2000).PubMedCrossRefGoogle Scholar
  21. Olgen, S., Akaho, E., and Nebioglu, D., Synthesis and anti-tyrosine activity of 3-(substituted-benzylidene)-1, 3-dihydro-indolin derivatives: investigation of their role against p60c-Src receptor tyrosine kinase with the application of receptor docking studies.Farmaco, 60, 497–506 (2005).PubMedCrossRefGoogle Scholar
  22. Olgen, S., Akaho, E., and Nebioglu, D., Evaluation of indole esters as inhibitors of p60c-Src receptor tyrosine kinase and investigation of the inhibition using receptor docking studies. J. Enzy. Inhib. Med. Chem. 18, 485–490 (2003).CrossRefGoogle Scholar
  23. Rewcastle, G. W., Palmer, B. D., Dobrusin, E. M., Fry, D. W., Kraker, A. J., and Denny, W. A., Tyrosine kinase inhibitors. 3. Structure-activity relationships for inhibition of protein tyrosine kinases by nuclear-substituted derivatives of 2, 2′-dithiobis (1-methyl-N-phenyl-1H-indole-3-carboxamide).J. Med. Chem., 37, 2033–2042 (1994).PubMedCrossRefGoogle Scholar
  24. Roussidis, A. E. and Karamanos, N. K., Inhibition of receptor tyrosine kinase-based signal transduction as specific target for cancer treatment.In vivo, 16, 459–470 (2002).PubMedGoogle Scholar
  25. Schulz-Gasch, T. and Stahl, M., Binding site characteristics in structure-based virtual screening: evaluation of current docking tools.J. Mol. Model., 9, 47–57 (2003).PubMedGoogle Scholar
  26. Sun, L., Tran, N., Tang, F., App, H., Hirth, P., McMahon, G., and Tang, C., Synthesis and biological evaluations of 3-substituted indolin-2-ones: a novel class of tyrosine kinase inhibitors that exhibit selectivity toward particular tyrosine kinases.J. Med. Chem., 41, 2588–2603 (1998).PubMedCrossRefGoogle Scholar
  27. Sun, Y., Ewing, T. J. A., Skillman, A. G., and Kuntz, I. D., CombiDOCK: Structure-based combinatorial docking and library design.J. Comp.-Aid. Mol. Des., 12, 597–604 (1998).CrossRefGoogle Scholar
  28. Sun, L., Tran, N., Liang, C., Tang, F., Rice, Schreck, R., Waltz, K., Shaever, L. K., McMahon, G., and Tang, C., Design, synthesis and evaluations of substituted 3-[(3- or 4-carboxy ethyl pyrrol-2-yl)methylindenyl]indolin-2-ones as inhibitors of VEGF, FGF and PDGF receptor tyrosine kinases.J. Med. Chem., 42, 5120–5130 (1999).PubMedCrossRefGoogle Scholar
  29. Sun, L., Tran, N., Liang, C., Hubbard, S., Tang, F., Lipson, K., Schreck, R., Zhou, Y., McMahon, G., and Tang, C., Identification of substituted 3-[(4, 5, 6, 7-Tetrahydro-1H-indole-2-yl) methylene]-1, 3-hydroindole-2-ones as growth factor receptor inhibitors for VEGF-R2 (Flk-1/KDR), FGF-R1, and PDGF-Rb tyrosine kinases.J. Med. Chem., 43, 2655–2663 (2000).PubMedCrossRefGoogle Scholar
  30. Taylor, V. C., Buckley, C. D., Douglas, M., Cody, A. J., Simmons, D. L., and Freeman, S. D., The myeloid-specific sialic acid binding receptor, CD33, associated with the protein-tyrosine phosphatases, SHP-1 and SHP-2.J. Biol. Chem., 274, 11505–11512 (1999).PubMedCrossRefGoogle Scholar
  31. Taylor, R. D., Jewsbury, P. J., and Essex, J. W., A review of protein-small molecule docking methods.J. Comp.-Aid. Mol. Des., 16, 151–166 (2002).CrossRefGoogle Scholar
  32. Terrence, R. B., Protein-tyrosine kinase inhibitors.Drugs of the Future, 17, 119–131 (1992).Google Scholar
  33. Thompson, A. M., Rewcastle, G. W., Boushelle, S. L., Hartl, B. G., Kraker, A. J., Lu, G. H., Batley, B. L., Panek, R. L., Showalter, H. D. H., and Denny, W. A., Synthesis and structure-activity relationships of 7-substituted 3-(2, 6-dichlorophenyl)-1, 6-naphthydrin-2 (1H)-ones as selective inhibitors of p60c-Src.J. Med. Chem., 43, 3134–3147 (2000).PubMedCrossRefGoogle Scholar
  34. Traxler, P. and Lyndon, N., Recent advances in protein tyrosine kinase inhibitors.Drugs of the Future, 20, 1261–1274 (1995).Google Scholar
  35. Widler, L., Green, J., Missbach, M., Susa, M., and Altmann, E., 7-Alkyl- and 7-cycloalkyl-5-aryl-pyrrolo[2, 3-d]pyrimidines-potent inhibitors of the tyrosine kinase c-Src.Bioorg. Med. Chem. Lett., 11, 849–852 (2001).PubMedCrossRefGoogle Scholar
  36. Zhu, X., Kim, J. L., Newcomb, J. R., Rose, P. E., Stover, D. R., Toledo, L. M., Zhao, H., and Morgenstern, K. A., Structural Analysis of the Lymphocyte-Specific Kinase Lck in Complex with Non-Selective and Src Family Selective Kinase.Structure, 7, 651–661 (1999).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2006

Authors and Affiliations

  1. 1.Department of Pharmaceutical Chemistry, Faculty of PharmacyUniversity of AnkaraAnkaraTurkey

Personalised recommendations