Archives of Pharmacal Research

, Volume 29, Issue 7, pp 577–581 | Cite as

Glycation-induced inactivation of antioxidant enzymes and modulation of cellular redox status in lens cells

Articles Drug Devopment


Oxidative mechanisms are thought to have a major role in cataract formation and diabetic complications. Antioxidant enzymes play an essential role in the antioxidant system of the cells that work to maintain low steady-state concentrations of the reactive oxygen species. When HLE-B3 cells, a human lens cell line were exposed to 50–100 mM glucose for 3 days, decrease of viability, inactivation of antioxidant enzymes, and modulation of cellular redox status were observed. Significant increase of cellular oxidative damage reflected by lipid peroxidation and DNA damage were also found. The glycation-mediated inactivation of antioxidant enzymes may result in the perturbation of cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition and may contribute to various pathologies associated with the long term complications of diabetes.

Key words

Glycation Diabetes Antioxidant enzymes Redox status Lens cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baynes, J. W., Role of oxidative stress in development of complications in diabetes.Diabetes, 40, 405–412 (1991).PubMedCrossRefGoogle Scholar
  2. Biemel, K. M., Friedl, D. A., and Lederer, M. O., Identification and quantification of major maillard cross-links in human serum albumin and lens protein. Evidence for glucosepane as the dominant compound.J. Biol. Chem., 277, 24907–24915 (2002).PubMedCrossRefGoogle Scholar
  3. Brownlee, M., Vlassara, H., and Cerami, A., Nonenzymatic glycosylation and the pathogenesis of diabetic complications.Ann. Int. Med., 101, 527–537 (1984).PubMedGoogle Scholar
  4. Brownlee, M., Biochemistry and molecular biology of diabetic complications.Nature, 414, 813–820 (2000).CrossRefGoogle Scholar
  5. Chance, B., Sies, H., and Boveris, A., Hydroperoxide metabolism in mammalian organs.Physiol. Rev., 59, 527–605 (1979).PubMedGoogle Scholar
  6. Duhaiman, A. S., Rabbani, N., and Cotlier, E., Camel lens crystallins glycosylation and high molecular weight aggregate formation in the presence of ferrous ions and glucose.Biochem. Biophys. Res. Commun., 173, 823–832 (1990).PubMedCrossRefGoogle Scholar
  7. Jiang, Z. Y., Hunt, J. V., and Wolff, S. P., Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein.Anal. Biochem., 202, 384–389 (1992).PubMedCrossRefGoogle Scholar
  8. Kil, I. S., Lee, J. H., Shin, A. H., and Park, J.-W., Glycationinduced inactivation of NADP+-dependent isocitrate dehydrogenase: Implications for diabetes and aging.Free Radic. Biol. Med., 37, 1765–1778 (2004).PubMedCrossRefGoogle Scholar
  9. Lee, S. M., Koh, H. J., Park, D. C., Song, B. J., Huh, T. L., and Park, J. W., Cytosolic NADP+-dependent isocitrate dehydrogenase status modulates oxidative damage to cells.Free Radic. Biol. Med., 32, 1185–1196 (2002).PubMedCrossRefGoogle Scholar
  10. McCord, J. M. and Fridovich, I., Superoxide dismutase: An enzymic function for erythrocuprein (hemocuprein).J. Biol. Chem., 224, 6049–6055 (1969).Google Scholar
  11. Meister, A. and Anderson, M. E., Glutathione.Ann. Rev. Biochem., 52, 711–760 (1993).CrossRefGoogle Scholar
  12. Myint, T., Hoshi, S., Ookawara, T., Miyazawa, N., Suzuki, K., and Taniguchi, N., Immunological detection of glycated proteins in normal and streptozotocin-induced diabetic rats using anti hexitol-lysine IgG.Biochim. Biophys. Acta, 1272, 73–79 (1995).PubMedGoogle Scholar
  13. Nishikawa, T., Edelstein, D., Du, X. L., Yamagishi, S., Matsumura, T., Kaneda, Y., Yorek, M. A., Beebe, D., Oates, P. J., Hammes, H. P., Giardino, I., and Brownlee, M., Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage.Nature, 404, 787–790 (2001).Google Scholar
  14. Okimoto, Y., Watanabe, A., Niki, E., Yamashita, T., and Noguchi, N., A novel fluorescent probe diphenyl-1-pyrenyl-phosphine to follow lipid peroxidation in cell membranes.FEBS Lett., 474, 137–140 (2000).CrossRefGoogle Scholar
  15. Park, J. W. and Floyd, R. A., Lipid peroxidation products mediate the formation of 8-hydroxydeoxyguanosine in DNA.Free Radic. Biol. Med., 12, 245–250 (1992).PubMedCrossRefGoogle Scholar
  16. Shibutani, S., Takeshita, M., and Grollman, A. P., Insertion of specific base during DNA synthesis past the oxidation-damaged base 8-oxodG.Nature, 349, 431–434 (1991).PubMedCrossRefGoogle Scholar
  17. Struthers, L., Patel, R., Clark, J., and Thomas, S., Direct detection of 8-oxodeoxyguanosine and 8-oxoguanine by avidin and its analogues.Anal. Biochem., 255, 20–31 (1998).PubMedCrossRefGoogle Scholar
  18. Sundaresan, M., Yu, Z. Y., Ferrans, C. J., Irani, K., and Finkel, T., Requirement for generation of H2O2 for platelet-derived growth factor signal transduction.Science, 270, 296–299 (1995).PubMedCrossRefGoogle Scholar
  19. Tabatabaie, T. and Floyd, R. A., Susceptibility of glutathione peroxidase and glutathione reductase to oxidative damage and the protective effect of spin trapping aqents.Arch. Biochem. Biophys., 314, 112–119 (1994).PubMedCrossRefGoogle Scholar
  20. Tauskela, J. S., Hewitt, K., Kang, L. P., Comas, T., Gendron, T., Hakim, A., Hogan, M., Durkin, J., and Morley, P., Evaluation of glutathione-sensitive fluorescent dyes in cortical culture.Glia, 30, 329–341 (2001).CrossRefGoogle Scholar
  21. Varma, S. D. and Kinoshita, J. H., Sorbitol pathway in diabetic and galactosemic rat lens.Biochim. Biophys. Acta, 328, 632–640 (1974).Google Scholar
  22. Vincent, M. A., Brownlee, M., and Russell, J. W., Oxidative stress and programmed cell death in diabetic neuropathy.Ann. New York Acad. Sci., 959, 368–383 (2002).CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2006

Authors and Affiliations

  1. 1.School of Life Sciences and Biotechnology, College of Natural SciencesKyungpook National UniversityTaeguKorea

Personalised recommendations