Advertisement

Doxorubicin release from core-shell type nanoparticles of poly(DL-lactide-co-glycolide)-grafted dextran

  • Young -Il Jeong
  • Ki -Choon Choi
  • Chae -Eun Song
Articles Drug Efficacy

Abstract

In this study, we prepared core-shell type nanoparticles of a poly(dl-lactide-co-glycolide) (PLGA) grafted-dextran (DexLG) copolymer with varying graft ratio of PLGA. The synthesis of the DexLG copolymer was confirmed by1H nuclear magnetic resonance (NMR) spectroscopy. The DexLG copolymer was able to form nanoparticles in water by self-aggregating process, and their particle size was around 50 nm≈300 nm according to the graft ratio of PLGA. Morphological observations using a transmission electron microscope (TEM) showed that the nanoparticles of the DexLG copolymer have uniformly spherical shapes. From fluorescence probe study using pyrene as a hydrophobic probe, critical association concentration (CAC) values determined from the fluorescence excitation spectra were increased as increase of DS of PLGA.1H-NMR spectroscopy using D2O and DMSO approved that DexLG nanoparticles have core-shell structure, i.e. hydrophobic block PLGA consisted inner-core as a drug-incorporating domain and dextran consisted as a hydrated outershell. Drug release rate from DexLG nano-particles became faster in the presence of dextranase in spite of the release rate not being significantly changed at high graft ratio of PLGA. Core-shell type nanoparticles of DexLG copolymer can be used a sa colonic drug carrier. In conclusion, size, morphology, and molecular structure of DexLG nanoparticles are available to consider as an oral drug targeting nanoparticles.

Key words

Doxorubicin Dextran Core-shell type nanoparticles Poly(d,l-lactide-co-glycolide) Biodegradability Colon delivery 

References

  1. Akiyoshi, K., Kobayashi, S., Shichibe, S., Mix, D., Baudys, M., Kim, S. W., and Sunamoto, J., Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin.J. Control. Release., 54, 313–320 (1998).PubMedCrossRefGoogle Scholar
  2. Allemann, E., Gurny, R., and Doelker, E., Drug-loaded nanoparticles-preparation methods and drug targeting issues.Europ. J. Pharm. Biopharm., 39, 173–191 (1993).Google Scholar
  3. Andrianov, A. K. and Payne, L. G., Polymeric carriers for oral uptake of microparticulates.Adv. Drug Del. Rev., 34, 155–170 (1998).CrossRefGoogle Scholar
  4. Basit, A. W., Advances in colonic drug delivery.Drugs, 65, 1991–2007 (2005).PubMedCrossRefGoogle Scholar
  5. Carino, G. P., Jacob, J. S., and Mathiowitz, E., Nanosphere based oral insulin delivery.J. Control. Release., 65, 261–269 (2000).PubMedCrossRefGoogle Scholar
  6. Chen, H. and Langer, R., Oral particulate delivery: status and future trends.Adv. Drug Del. Rev., 34, 339–350 (1998).CrossRefGoogle Scholar
  7. Desai, M. P., Labhasetwar, V., Amidon, G. L., and Levy, R. J., Gastrointestinal uptake of biodegradable microparticles: effect of particle size.Pharm. Res., 13, 1838–1845 (1996).PubMedCrossRefGoogle Scholar
  8. Donini, C., Robinson, D. N., Colombo, P., Giordano, F., and Peppas, N. A., Preparation of poly(methacrylic acid-g-poly (ethylene glycol)) nanospheres from methacrylic monomers for pharmaceutical applications.Int. J. Pharm., 245, 83–91 (2002).PubMedCrossRefGoogle Scholar
  9. Gref, R., Minamitake, Y., Peracchia, M. T., Trubetskoy, V., Torchilin, V., and Langer, R., Biodegradable long-circulating polymeric nanospheres.Science, 263, 1600–1603 (1994).PubMedCrossRefGoogle Scholar
  10. Hussain, N., Jani, P. U., and Florence, A. T., Enhanced oral uptake of tomato lectin-conjugated nanoparticles in the rat.Pharm. Res., 14, 613–618 (1997).PubMedCrossRefGoogle Scholar
  11. Ichinose, K., Tomiyama, N., Nakashima, M., Ohya, Y., Ichikawa, M., Ouchi, T., and Kanematsu, T., Antitumor activity of dextran derivatives immobilizing platinum complex (II).Anticancer Drugs, 11, 33–38 (2000).PubMedCrossRefGoogle Scholar
  12. Jeong, Y. I., Cheon, J. B., Kim, S. H., Nah, J. W., Lee, Y. M., Sung, Y. K., Akaike, T., and Cho, C. S., Clonazepam release from core-shell type nanoparticlesin vitro.J. Control. Release, 51, 169–178 (1998).PubMedCrossRefGoogle Scholar
  13. Jung, S. W., Jeong, Y. I., and Kim, S. H., Characterization of hydrophobized pullulan with various hydrophobicities.Int. J. Pharm., 254, 109–121 (2003).PubMedCrossRefGoogle Scholar
  14. Jung, S. W., Jeong, Y. I., Kim, Y. H., and Kim, S. W., Self-assembled nanoparticles of poly(ethylene glycol) grafted pullulan acetate as a novel drug carrier.Arch. Pharm. Res., 27, 562–569 (2004).PubMedCrossRefGoogle Scholar
  15. Kwon, G. S., Naito M., Yokoyama, M., Okano, T., Sakurai, Y., and Kataoka, K., Polymeric micelles based on AB block copolymers of poly(ethylene oxide) and poly(β-benzyll-aspartate).Langmuir, 9, 945–949 (1993).CrossRefGoogle Scholar
  16. Molteni L., Dextran and inulin conjugates as drug carriers.Methods in Enzymolozy, 112, 285–298 (1985).CrossRefGoogle Scholar
  17. Nishikawa, T., Akiyoshi, K., and Sunamoto, J., supramolecular assembly between nanoparticles of hydrophobized polysaccharide and soluble protein complexation between the self-aggregate of cholesterol-bearing pullulan and α-chymotrypsin.Macromolecules, 27, 7654–7659 (1994).CrossRefGoogle Scholar
  18. Norris, D. A., Puri, N., and Sinko, P. J., The effect of physical barriers and properties on the oral absorption of particulates.Adv. Drug Del. Rev., 34, 135–154 (1998).CrossRefGoogle Scholar
  19. Peppas N. A. and Robinson J. R., Bioadhesives for optimization of drug delivery.J. Drug Targeting., 3, 183–184 (1995).CrossRefGoogle Scholar
  20. Van Dijk-Wolthuis, W. N. E., Franssen, O., Talsma, H., Van Steenbergen, M. J., Kettenes-Van den Bosch, J. J., and Hennink, W. E., Synthesis, characterization, and polymerization of glycidyl methacrylate derivatized dextran.Macromolecules, 28, 6317–6322 (1995).CrossRefGoogle Scholar
  21. Wilhelm, M., Zaho, C. L., Wang, Y., Xu, R., Winnik, M. A., Mura, J. L., Riess, G., and Croucher, M. D., Poly(styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study.Macromolecules, 24, 1033–1040 (1991).CrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2006

Authors and Affiliations

  • Young -Il Jeong
    • 1
  • Ki -Choon Choi
    • 2
  • Chae -Eun Song
    • 3
  1. 1.The Research Institute of Medical SciencesChonnam National UniversityGwangjuKorea
  2. 2.Division of Endocrinology and Metabolism, Department of Internal Medicine, College of MedicineKorea UniversitySeoulKorea
  3. 3.Korea Institute of Natural Science Inc.JeonnamKorea

Personalised recommendations