Attenuation of morphine tolerance and withdrawal syndrome by coadministration of nalbuphine

  • Soyong Jang
  • Heejeong Kim
  • Donghyun Kim
  • Myeon Woo Jeong
  • Tangen Ma
  • Seongyoul Kim
  • Ing K. Ho
  • Seikwan Oh
Articles Drug Development


Morphine has been used widely on the treatment of many types of chronic pain. However the development of tolerance to and dependence on morphine by repeat application is a major problem in pain therapy. The purpose of the present study was to investigate whether combined administration of nalbuphine with morphine affects the development of tolerance to and dependence on morphine. We hypothesize that the use of nalbuphine, κ-agonist may prove to be useful adjunct therapy to prevent morphine-induced undesirable effects in the management of some forms of chronic pain. Morphine (10 mg/kg) was injected to rats intraperitoneally for 5 day. The variable dose of nalbuphine (0.1, 1.0 and 5.0 mg/kg) was administered (i.p.) in combination with morphine injection. The development of morphine tolerance was assessed by measuring the antinociceptive effect with the Randall-Selitto apparatus. The development of dependence on morphine was determined by the scoring the precipitated withdrawal signs for 30 min after injection of naloxone (10 mg/kg, i.p.). Nalbuphine did not attenuate antinociceptive effect of morphine in rats. Interestingly, combined administration of morphine with nalbuphine (10∶1) significantly attenuated the development of dependence on morphine. The elevation of [3H]MK-801 binding in frontal cortex, dentate gyrus, and cerebellum after chronic morphine infusion was suppressed by the coadministration of nalbuphine. In addition, the elevation of NR1 expression by morphine was decreased by the coadministration of nalbuphine in rat cortex. These results suggest that the coadministration of nalbuphine with morphine in chronic pain treatment can be one of therapies to reduce the development of tolerance to and dependence on morphine.

Key words

Morphine Nalbuphine Tolerance μ receptor κ receptor Autoradiography 


  1. Aceto, M. D., Dewey, W. L., Portoghese, P. S., and Takemori, A. E., Effects of beta-funaltrexamine (beta-FNA) on morphine dependence in rats and monkeys.Eur. J. Pharmacol., 123, 387–393 (1986).PubMedCrossRefGoogle Scholar
  2. Aceto, M. D., Dewey, W. L., Chang, J. K., and Lee, N. M., Dynorphin-(1–13): effects in nontolerant and morphine-dependent rhesus monkeys.Eur. J. Pharmacol., 83, 139–142 (1982).PubMedCrossRefGoogle Scholar
  3. Attali, B., Saya, D., Nah, S. Y., and Vogel, Z., Kappa opiate agonists inhibit Ca2+ influx in rat spinal cord-dorsal root ganglion cocultures. Involvement of a GTP-binding protein.J. Biol. Chem., 264, 347–353 (1989).PubMedGoogle Scholar
  4. Bertalmio, A. J. and Woods, J. H., Discriminative stimulus effects of cyclorphane: selective antagonism with naltrexone.Psychopharmacology (Berl), 106, 189–194 (1992).CrossRefGoogle Scholar
  5. Chen, J. C., Smith, E. R., Cahill, M., Cohen, R., and Fishman, J. R., The opioid receptor binding of pentazocine, morphine, fentanyl, butorphanol and nalbuphine.Life Sci., 52, 389–396 (1992).CrossRefGoogle Scholar
  6. Cherubini, E. and North, R. A., Mu and kappa opioids inhibit transmitter release by different mechanisms.Proc. Natl. Acad. Sci. U.S.A., 82, 1860–1863 (1985).PubMedCrossRefGoogle Scholar
  7. Di Chiara, G. and Imperato, A., Oposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats.J. Pharmacol. Exp. Ther., 244, 1076–1080 (1988).Google Scholar
  8. Dickenson, A. H., Neurotransmitters, Drugs and Disease, in Webster R. A. and Jordan, C. C. (Ed), Blackwell Scientific Publications, Oxford, p265 (1989).Google Scholar
  9. Franklin, K. B. J. and Paxinos, G., The mouse brain in stereotaxic coordinates, Academic Press, San Diego, CA (1997).Google Scholar
  10. Fukagawa, Y., Katz, J. L., and Suzuki, T., Effects of a selective kappa-opioid agonist, U-50, 488H, on morphine dependence in rats.Eur. J. Pharmacol., 170, 47–51 (1989).PubMedCrossRefGoogle Scholar
  11. Huidobro-Taro, J. P. and Parada, S., Kappa-opiates and urination: pharmacological evidence for an endogenous role of the kappa-opiate receptor in fluid and electrolyte balance.Eur. J. Pharmacol., 107, 1–10 (1984).CrossRefGoogle Scholar
  12. Gringauz, M., Rabinowitz, R., Stav, A., and Korczyn, A. D., Tolerance to the analgesic effect of buprenorphine, butorphanol, nalbuphine, and cyclorphan, and cross-tolerance to morphine,J. Anesth., 15, 204–209 (2001).PubMedCrossRefGoogle Scholar
  13. Kayser, V. and Guilbaud, G., The analgesic effects of morphine but not those of the enkephalinase inhibitor thiorphan, are enhanced in arthritic rats.Brain Res., 267, 131–138 (1983).PubMedCrossRefGoogle Scholar
  14. Kumor, K. M., Haertzen, C. A., Johnson, R. E., Kocher, T., and Jasinsi, D., Human psychopharmacology of ketocyclazocine as compared with cyclazocine, morphine and placebo.J. Pharmacol. Exp. Ther., 238, 960–968 (1986).PubMedGoogle Scholar
  15. Laurie, D. J. and Seeburg, P. H., Ligand affinities at recombination N-methyl-D-aspartate receptors depend on subunit composition.Eur. J. Pharmacol. Mol. Pharmacol. Sect., 268, 335–345 (1994).CrossRefGoogle Scholar
  16. Lord, J. A. H., Waterfield, A. A., Hughes, J., and Kostrlitz, H. W., Endogenous opioid peptides: multiple agonists and receptors,Nature, 267, 495–499 (1977).PubMedCrossRefGoogle Scholar
  17. Martin, W. R., Eades, C. G., Thompsom, J. A., Huppler, R. E., and Gilbert, P. E., The effects of morphine- and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog.J. Pharmacol. Exp. Ther., 197, 517–532 (1976).PubMedGoogle Scholar
  18. Millan, M. J., Kappa-opioid receptors and analgesia.Trends Pharmacol. Sci., 11, 70–76 (1990).PubMedCrossRefGoogle Scholar
  19. Narita, M., Opioid-regulated pharmacological interaction and intracellular signaling mechanism. Dissertation for Ph.D., Hoshi University, Tokyo, Japan, (1992).Google Scholar
  20. Oh, S., Kim, J. I., Chung, M. W., and Ho, I. K., Modulation of NMDA receptor subunit mRNA in butorphanol-tolerant and-withdrawing rats.Neurochem. Res., 25, 1603–1611 (2000).PubMedCrossRefGoogle Scholar
  21. Penning, J. P., Samson, B., and Baxter, A. D., Reversal of epidural morphine-induced respiratory depression and pruritus with nalbuphine.Can. J. Anaesth., 35, 599–604 (1988).PubMedCrossRefGoogle Scholar
  22. Pfeiffer, A., Brantl, V., Herz, A., and Emrich, H. M., Psychotomimesis mediated by kappa opiate receptors.Science, 233, 774–776 (1986).PubMedCrossRefGoogle Scholar
  23. Pick, C. G., Paul, D., and Pasternak, G. W., Nalbuphine, a mixed kappa 1 and kappa 3 analgesic in mice.J. Pharmacol. Exp. Ther., 262, 1044–1050 (1992).PubMedGoogle Scholar
  24. Picker, M. J., Yarbrough, J., Hughes, C. E., Smith, M. A., Morgan, D., and Dykstra, L. A., Agonist and antagonist effect of mixed action opioids in the pigeon drug discrimininant procedure: influence of training dose, intrinsic efficacy and interanimal differences.J. Pharmacol. Exp. Ther., 266, 756–767 (1993).PubMedGoogle Scholar
  25. Pillai, N. P. and Ross, D. H., Interaction of kappa receptor agonists with Ca2+ channel antagonists in the modulation of hypothermia.Eur. J. Pharmacol., 132, 237–244 (1986).PubMedCrossRefGoogle Scholar
  26. Rothman, R. B., Long, J. B., Bykov, V., Jacobson, A. E., Rice, K. C., and Holaday, J. W., β-FNA binds irreversibly to the opiate receptor complex: in vivo and in vitro evidence.J. Pharmacol. Exp. Ther., 247, 405–416 (1988).PubMedGoogle Scholar
  27. Rawal, N., Mollefors, K., Axelsson, K., Lingardh, G., and Widman, B., An experimental study of urodynamic effects of epidural morphine and of naloxone reversal.Anesth. Analg., 62, 641–647 (1983).PubMedCrossRefGoogle Scholar
  28. Sakurai, S. Y., Penny, J. B., and Young, A. B., Regionally distinct N-methyl-D-aspartate receptors distinguished by quantitative autoradiography of [3H]MK-801 binding in rat brain.J. Neurochem., 60, 1344–1353 (1993).PubMedCrossRefGoogle Scholar
  29. Schmidt, W. K., Tam, S. W., Shotzberger, G. S., Smith, D. H. Jr, Clark, R., and Vernier, V. G., Nalbuphine.Drug Alcohol Depend., 14, 339–362 (1985).PubMedCrossRefGoogle Scholar
  30. Shippenberg, T. S., Emmett-Oglesby, N. W., Ayesta, F. J., and Herz, A., Tolerance and selective cross-tolerance to the motivational effects of opioids.Psychopharmacology, 96, 110–115 (1988).PubMedCrossRefGoogle Scholar
  31. Sofuoglu, M., Portoghese, P. S., and Takemori, A. E., Maintenance of acute morphine tolerance in mice by selective blockage of kappa opioid receptors with norbinaltorphimine.Eur. J. Pharmacol., 210, 159–162 (1992).PubMedCrossRefGoogle Scholar
  32. Spanagel, R., Herz, A., and Shippenberg, T. S., Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway.Proc. Natl. Acad. Sci. U.S.A., 89, 2046–2050 (1992).PubMedCrossRefGoogle Scholar
  33. Suzuki, T., Funada, M., Narit, M., Misawa, M., and Nagase H., Pertussis toxin abolishes mu- and delta-opioid agonist-induced place preference.Eur. J. Pharmacol., 205, 85–88 (1991).PubMedCrossRefGoogle Scholar
  34. Suzuki, T., Fukagawa, Y., Yoshii, T., and Yanuara, S., Effect of opioid agonist-antagonist interaction on morphine dependence in rats.Life Sci., 42, 2729–2737 (1988).PubMedCrossRefGoogle Scholar
  35. Suzuki T. and Misawa, M., Physical dependence on morphine using the mu receptor deficient CXBK mouse.Prog. Clin. Biol. Res., 328, 519–522 (1990).PubMedGoogle Scholar
  36. Tokyuama, S., Wakabayashi, H., and Ho, I. K., Direct evidence for a role of glutamate in the expression of the opioid withdrawal syndrome.Eur. J. Pharmacol., 295, 123–129 (1996).CrossRefGoogle Scholar
  37. Tokuyama, S., Zhu, H., Oh, S., Ho, I. K., and Yamamoto, T., Further evidence for a role of NMDA receptors in the locus coeruleus in the expression of withdrawal syndrome from opioids.Neurochem. Int., 39, 103–109 (2001).PubMedCrossRefGoogle Scholar
  38. Walker, E. A. and Young, A. M., Discriminative-stimulus effects of the low efficacy μ agonist nalbuphine.J. Pharmacol. Exp. Ther., 267, 322–330 (1993).PubMedGoogle Scholar
  39. Werz, M. A. and MacDonald, R. L., Dynorphin and neoendorphin peptides decrease dorsal root ganglion neuron calcium-dependent action potential duration.J. Pharmacol. Exp. Ther., 234, 49–56 (1985).PubMedGoogle Scholar
  40. Zhu, H. and Ho, I. K., NMDA-R1 antisense attenuates morphine withdrawal behaviors,Eur. J. Pharmacol., 352, 151–156 (1998).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2006

Authors and Affiliations

  • Soyong Jang
    • 1
  • Heejeong Kim
    • 1
  • Donghyun Kim
    • 2
  • Myeon Woo Jeong
    • 3
  • Tangen Ma
    • 4
  • Seongyoul Kim
    • 4
  • Ing K. Ho
    • 4
  • Seikwan Oh
    • 1
    • 2
  1. 1.Department of Neuroscience, College of MedicineEwha Womans UniversitySeoulKorea
  2. 2.Medical Research Institute, College of MedicineEwha Womans UniversitySeoulKorea
  3. 3.Department of Pharmacology, National Institute of Toxicological ResearchKFDASeoulKorea
  4. 4.Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonUSA

Personalised recommendations