Skip to main content
Log in

Attenuation of morphine tolerance and withdrawal syndrome by coadministration of nalbuphine

  • Articles
  • Drug Development
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Morphine has been used widely on the treatment of many types of chronic pain. However the development of tolerance to and dependence on morphine by repeat application is a major problem in pain therapy. The purpose of the present study was to investigate whether combined administration of nalbuphine with morphine affects the development of tolerance to and dependence on morphine. We hypothesize that the use of nalbuphine, κ-agonist may prove to be useful adjunct therapy to prevent morphine-induced undesirable effects in the management of some forms of chronic pain. Morphine (10 mg/kg) was injected to rats intraperitoneally for 5 day. The variable dose of nalbuphine (0.1, 1.0 and 5.0 mg/kg) was administered (i.p.) in combination with morphine injection. The development of morphine tolerance was assessed by measuring the antinociceptive effect with the Randall-Selitto apparatus. The development of dependence on morphine was determined by the scoring the precipitated withdrawal signs for 30 min after injection of naloxone (10 mg/kg, i.p.). Nalbuphine did not attenuate antinociceptive effect of morphine in rats. Interestingly, combined administration of morphine with nalbuphine (10∶1) significantly attenuated the development of dependence on morphine. The elevation of [3H]MK-801 binding in frontal cortex, dentate gyrus, and cerebellum after chronic morphine infusion was suppressed by the coadministration of nalbuphine. In addition, the elevation of NR1 expression by morphine was decreased by the coadministration of nalbuphine in rat cortex. These results suggest that the coadministration of nalbuphine with morphine in chronic pain treatment can be one of therapies to reduce the development of tolerance to and dependence on morphine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aceto, M. D., Dewey, W. L., Portoghese, P. S., and Takemori, A. E., Effects of beta-funaltrexamine (beta-FNA) on morphine dependence in rats and monkeys.Eur. J. Pharmacol., 123, 387–393 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Aceto, M. D., Dewey, W. L., Chang, J. K., and Lee, N. M., Dynorphin-(1–13): effects in nontolerant and morphine-dependent rhesus monkeys.Eur. J. Pharmacol., 83, 139–142 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Attali, B., Saya, D., Nah, S. Y., and Vogel, Z., Kappa opiate agonists inhibit Ca2+ influx in rat spinal cord-dorsal root ganglion cocultures. Involvement of a GTP-binding protein.J. Biol. Chem., 264, 347–353 (1989).

    PubMed  CAS  Google Scholar 

  • Bertalmio, A. J. and Woods, J. H., Discriminative stimulus effects of cyclorphane: selective antagonism with naltrexone.Psychopharmacology (Berl), 106, 189–194 (1992).

    Article  CAS  Google Scholar 

  • Chen, J. C., Smith, E. R., Cahill, M., Cohen, R., and Fishman, J. R., The opioid receptor binding of pentazocine, morphine, fentanyl, butorphanol and nalbuphine.Life Sci., 52, 389–396 (1992).

    Article  Google Scholar 

  • Cherubini, E. and North, R. A., Mu and kappa opioids inhibit transmitter release by different mechanisms.Proc. Natl. Acad. Sci. U.S.A., 82, 1860–1863 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara, G. and Imperato, A., Oposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats.J. Pharmacol. Exp. Ther., 244, 1076–1080 (1988).

    Google Scholar 

  • Dickenson, A. H., Neurotransmitters, Drugs and Disease, in Webster R. A. and Jordan, C. C. (Ed), Blackwell Scientific Publications, Oxford, p265 (1989).

    Google Scholar 

  • Franklin, K. B. J. and Paxinos, G., The mouse brain in stereotaxic coordinates, Academic Press, San Diego, CA (1997).

    Google Scholar 

  • Fukagawa, Y., Katz, J. L., and Suzuki, T., Effects of a selective kappa-opioid agonist, U-50, 488H, on morphine dependence in rats.Eur. J. Pharmacol., 170, 47–51 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Huidobro-Taro, J. P. and Parada, S., Kappa-opiates and urination: pharmacological evidence for an endogenous role of the kappa-opiate receptor in fluid and electrolyte balance.Eur. J. Pharmacol., 107, 1–10 (1984).

    Article  Google Scholar 

  • Gringauz, M., Rabinowitz, R., Stav, A., and Korczyn, A. D., Tolerance to the analgesic effect of buprenorphine, butorphanol, nalbuphine, and cyclorphan, and cross-tolerance to morphine,J. Anesth., 15, 204–209 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Kayser, V. and Guilbaud, G., The analgesic effects of morphine but not those of the enkephalinase inhibitor thiorphan, are enhanced in arthritic rats.Brain Res., 267, 131–138 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Kumor, K. M., Haertzen, C. A., Johnson, R. E., Kocher, T., and Jasinsi, D., Human psychopharmacology of ketocyclazocine as compared with cyclazocine, morphine and placebo.J. Pharmacol. Exp. Ther., 238, 960–968 (1986).

    PubMed  CAS  Google Scholar 

  • Laurie, D. J. and Seeburg, P. H., Ligand affinities at recombination N-methyl-D-aspartate receptors depend on subunit composition.Eur. J. Pharmacol. Mol. Pharmacol. Sect., 268, 335–345 (1994).

    Article  CAS  Google Scholar 

  • Lord, J. A. H., Waterfield, A. A., Hughes, J., and Kostrlitz, H. W., Endogenous opioid peptides: multiple agonists and receptors,Nature, 267, 495–499 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Martin, W. R., Eades, C. G., Thompsom, J. A., Huppler, R. E., and Gilbert, P. E., The effects of morphine- and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog.J. Pharmacol. Exp. Ther., 197, 517–532 (1976).

    PubMed  CAS  Google Scholar 

  • Millan, M. J., Kappa-opioid receptors and analgesia.Trends Pharmacol. Sci., 11, 70–76 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Narita, M., Opioid-regulated pharmacological interaction and intracellular signaling mechanism. Dissertation for Ph.D., Hoshi University, Tokyo, Japan, (1992).

    Google Scholar 

  • Oh, S., Kim, J. I., Chung, M. W., and Ho, I. K., Modulation of NMDA receptor subunit mRNA in butorphanol-tolerant and-withdrawing rats.Neurochem. Res., 25, 1603–1611 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Penning, J. P., Samson, B., and Baxter, A. D., Reversal of epidural morphine-induced respiratory depression and pruritus with nalbuphine.Can. J. Anaesth., 35, 599–604 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer, A., Brantl, V., Herz, A., and Emrich, H. M., Psychotomimesis mediated by kappa opiate receptors.Science, 233, 774–776 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Pick, C. G., Paul, D., and Pasternak, G. W., Nalbuphine, a mixed kappa 1 and kappa 3 analgesic in mice.J. Pharmacol. Exp. Ther., 262, 1044–1050 (1992).

    PubMed  CAS  Google Scholar 

  • Picker, M. J., Yarbrough, J., Hughes, C. E., Smith, M. A., Morgan, D., and Dykstra, L. A., Agonist and antagonist effect of mixed action opioids in the pigeon drug discrimininant procedure: influence of training dose, intrinsic efficacy and interanimal differences.J. Pharmacol. Exp. Ther., 266, 756–767 (1993).

    PubMed  CAS  Google Scholar 

  • Pillai, N. P. and Ross, D. H., Interaction of kappa receptor agonists with Ca2+ channel antagonists in the modulation of hypothermia.Eur. J. Pharmacol., 132, 237–244 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Rothman, R. B., Long, J. B., Bykov, V., Jacobson, A. E., Rice, K. C., and Holaday, J. W., β-FNA binds irreversibly to the opiate receptor complex: in vivo and in vitro evidence.J. Pharmacol. Exp. Ther., 247, 405–416 (1988).

    PubMed  CAS  Google Scholar 

  • Rawal, N., Mollefors, K., Axelsson, K., Lingardh, G., and Widman, B., An experimental study of urodynamic effects of epidural morphine and of naloxone reversal.Anesth. Analg., 62, 641–647 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Sakurai, S. Y., Penny, J. B., and Young, A. B., Regionally distinct N-methyl-D-aspartate receptors distinguished by quantitative autoradiography of [3H]MK-801 binding in rat brain.J. Neurochem., 60, 1344–1353 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, W. K., Tam, S. W., Shotzberger, G. S., Smith, D. H. Jr, Clark, R., and Vernier, V. G., Nalbuphine.Drug Alcohol Depend., 14, 339–362 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Shippenberg, T. S., Emmett-Oglesby, N. W., Ayesta, F. J., and Herz, A., Tolerance and selective cross-tolerance to the motivational effects of opioids.Psychopharmacology, 96, 110–115 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Sofuoglu, M., Portoghese, P. S., and Takemori, A. E., Maintenance of acute morphine tolerance in mice by selective blockage of kappa opioid receptors with norbinaltorphimine.Eur. J. Pharmacol., 210, 159–162 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Spanagel, R., Herz, A., and Shippenberg, T. S., Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway.Proc. Natl. Acad. Sci. U.S.A., 89, 2046–2050 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, T., Funada, M., Narit, M., Misawa, M., and Nagase H., Pertussis toxin abolishes mu- and delta-opioid agonist-induced place preference.Eur. J. Pharmacol., 205, 85–88 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, T., Fukagawa, Y., Yoshii, T., and Yanuara, S., Effect of opioid agonist-antagonist interaction on morphine dependence in rats.Life Sci., 42, 2729–2737 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T. and Misawa, M., Physical dependence on morphine using the mu receptor deficient CXBK mouse.Prog. Clin. Biol. Res., 328, 519–522 (1990).

    PubMed  CAS  Google Scholar 

  • Tokyuama, S., Wakabayashi, H., and Ho, I. K., Direct evidence for a role of glutamate in the expression of the opioid withdrawal syndrome.Eur. J. Pharmacol., 295, 123–129 (1996).

    Article  Google Scholar 

  • Tokuyama, S., Zhu, H., Oh, S., Ho, I. K., and Yamamoto, T., Further evidence for a role of NMDA receptors in the locus coeruleus in the expression of withdrawal syndrome from opioids.Neurochem. Int., 39, 103–109 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Walker, E. A. and Young, A. M., Discriminative-stimulus effects of the low efficacy μ agonist nalbuphine.J. Pharmacol. Exp. Ther., 267, 322–330 (1993).

    PubMed  CAS  Google Scholar 

  • Werz, M. A. and MacDonald, R. L., Dynorphin and neoendorphin peptides decrease dorsal root ganglion neuron calcium-dependent action potential duration.J. Pharmacol. Exp. Ther., 234, 49–56 (1985).

    PubMed  CAS  Google Scholar 

  • Zhu, H. and Ho, I. K., NMDA-R1 antisense attenuates morphine withdrawal behaviors,Eur. J. Pharmacol., 352, 151–156 (1998).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seikwan Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, S., Kim, H., Kim, D. et al. Attenuation of morphine tolerance and withdrawal syndrome by coadministration of nalbuphine. Arch Pharm Res 29, 677–684 (2006). https://doi.org/10.1007/BF02968252

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02968252

Key words

Navigation