Breast Cancer

, 9:270 | Cite as

President’s address: Duct stem cells and the tidal evocation of estrogen — as the background of epidemiological breast cancer data

  • Shunzo Kobayashi

Key words

Breast cancer Estrogen Estrogen receptor Epidemiology Duct epithelial stem cell 


  1. 1).
    Cosentino L, Shaver-Walker P, and Heddle JA: The relationships among stem cells, and villi in the small intestine of mice as determined by mutation tagging.Dev Dyn 207: 420–428, 1996.PubMedCrossRefGoogle Scholar
  2. 2).
    Sattar A, Robson SC, Patel HR,et al: Expression of growth regulatory genes in a SCID mouse-human model of intestinal epithelial regulation.J Pathol 187: 229–236, 1999.PubMedCrossRefGoogle Scholar
  3. 3).
    Clarke RB, Howell A, and Anderson E: Estrogen sensitivity of normal human breast tissue in vivo and implanted into athymic nude mice: analysis of the relationship between estrogen-induced proliferation and progesterone receptor expression.Breast Cancer Res Treat 45: 121–133, 1997.PubMedCrossRefGoogle Scholar
  4. 4).
    Russo J, Ao X, Grill C,et al: Pattern of distribution of cells positive for estrogen receptor alpha and progesterone receptor in relation to proliferating cells in the mammary gland.Breast Cancer Res Treat 53: 217–227, 1999.PubMedCrossRefGoogle Scholar
  5. 5).
    Popnikolov NK, Yang J, Guzman RC,et al: In vivo growth of collagen gel embedded normal human and mouse primary mammary epithelial cells.J Cellular Phys 163: 51–60, 1995.CrossRefGoogle Scholar
  6. 6).
    Clarke RB, Howell A, Potten CS,et al: Dissociation between steroid receptor expression and cell proliferation in the human breast.Cancer Res 57: 4987–4991, 1997.PubMedGoogle Scholar
  7. 7).
    Jackson D, Bresnick J, and Dickson C: A role for fibroblast growth factor signaling in the lobuloalveolar development of the mammary gland.J Mammary Gland Biol Neoplasia 2: 385–392, 1997.PubMedCrossRefGoogle Scholar
  8. 8).
    Davies BR, Platt-Higgins AM, Schmidt G,et al: Development of hyperplasias, preneoplasias, and mammary tumors in MMTV-c-erbB-2 and MMTV-TGFalpha transgenic rats.Am J Pathol 155: 303–314, 1999.PubMedGoogle Scholar
  9. 9).
    Shekhar MP, Werdell J, Santner SJ,et al: Breast stroma plays a dominant regulatory role in breast epithelial growth and differentiation: implications for tumor development and progression.Cancer Res 61: 1320–1326, 2001.PubMedGoogle Scholar
  10. 10).
    Gabelman BM and Emerman JT: Effects of estrogen, epidermal growth factor, and transforming growth factor-alpha on the growth of human breast epithelial cells in primary culture.Exp Cell Res 201: 113–118, 1992.PubMedCrossRefGoogle Scholar
  11. 11).
    De Bortoli M and Dati C: Hormonal regulation of type I receptor tyrosine kinase expression in the mammary gland.J Mammary Gland Biol Neoplasia 2: 175–185, 1997.PubMedCrossRefGoogle Scholar
  12. 12).
    Brandt R, Eisenbrandt R, Leenders F,et al: Mammary gland specific hEGF receptor transgene expression induces neoplasia and inhibits differentiation.Oncogene 19: 2129–2137, 2000.PubMedCrossRefGoogle Scholar
  13. 13).
    Shekhar MP, Werdell J, and Tait L: Interaction with endothelial cells is a prerequisite for branching ductal-alveolar morphogenesis and hyperplasia of preneoplastic human breast epithelial cells: regulation by estrogen.Cancer Res 60: 439–449, 2000.PubMedGoogle Scholar
  14. 14).
    Russo J, Rivera R, and Russo IH: Influence of age and parity on the development of the human breast.Breast Cancer Res Treat 23: 211–218, 1992.PubMedCrossRefGoogle Scholar
  15. 15).
    Russo J, Hu YF, Silva ID,et al: Cancer risk related to mammary gland structure and development.Microsc Res Tech 52: 204–223, 2001.PubMedCrossRefGoogle Scholar
  16. 16).
    Olssen H, Jernstrom H, Alm P,et al: Proliferation of the breast epithelium in relation to menstrual cycle phase, hormonal use and reproductive factors.Breast Cancer Res Treat 40: 187–196, 1996.CrossRefGoogle Scholar
  17. 17).
    Soderqvist G, Isaksson E, von Schoultz B,et al: Proliferation of breast epithelial cells in healthy women during the menstrual cycle.Am J Obstet Gynecol 176: 123–128, 1997.PubMedCrossRefGoogle Scholar
  18. 18).
    Schedin P, Mitrenga T, and Kaeck M: Estrous cycle regulation of mammary epithelial cell proliferation, differentiation, and death in the Sprague-Dawley rat: a model for investigating the role of estrous cycling in mammary carcinogenesis.J Mammary Gland Biol Neoplasia 5: 211–225, 2000.PubMedCrossRefGoogle Scholar
  19. 19).
    Raafat AM, Hofseth LJ, Li S,et al: A mouse model to study the effects of hormone replacement therapy on normal mammary gland during menopause: enhanced proliferative response to estrogen in late postmenopausal mice.Endocrinology 140: 2570–2580, 1999.PubMedCrossRefGoogle Scholar
  20. 20).
    Anderson E, Clark RB, and Howel A: Changes in the normal human breast throughout the menstrual cycle: relevance to carcinogenesis.Endocrine-Related Cancer 4: 23–33, 1997.CrossRefGoogle Scholar
  21. 21).
    Mac Mahon B, Cole P, and Broun J: Etiology of human breast cancer: a review.J Natl Cancer Inst 50: 21–42, 1973.Google Scholar
  22. 22).
    From the annual reports of Ministry of Health, labor and whelfare in Japan during past 5decads.Google Scholar
  23. 23).
    Kuroishi T, Hirose K, Tajima K,et al: Descriptive epidemiology of male breast cancer in Japan.Breast Cancer 4: 77–83, 1997.PubMedCrossRefGoogle Scholar
  24. 24).
    Tominaga S and Kuroishi T: Epidemiology and prevention of breast cancer in the 21st century.Breast Cancer 6: 283–288, 1999.PubMedCrossRefGoogle Scholar
  25. 25).
    Shyamala G, Schneider W, and Guiot MC: Estrogen dependent regulation of estrogen receptor gene expression in normal mammary gland and its relationship to estrogenic sensitivity.Receptor 2: 121–128, 1992.PubMedGoogle Scholar
  26. 26).
    Khan SA, Sachdeva A, Nairn S,et al: The normal breast epithelium of women with breast cancer displays an aberrant response to estradiol.Cancer Epidemiol, Biomark Prev 8: 867–872, 1999.Google Scholar
  27. 27).
    Nephew KP, Long X, Osborne E,et al: Effect of estradiol on estrogen receptor expression in rat uterine cell types.Biol Reprod 62: 168–177, 2000.PubMedCrossRefGoogle Scholar
  28. 28).
    Jeng MH, Shupnik MA, Bender TP,et al: Estrogen receptor expression and function in long-term estrogen-deprived human breast cancer cells.Endocrinology 139: 4164–4174, 1998.PubMedCrossRefGoogle Scholar
  29. 29).
    Lonning PE, Helle SI, Johannessen DC,et al: Influence of plasma estrogen levels on the lengh of the disease-free interval in postmenopausal women with breast cancer.Breast Cancer Res Treat 39: 335–341, 1996.PubMedCrossRefGoogle Scholar
  30. 30).
    Utsumi T, Yoshimura N, Maruta M,et al: Significance of steroid sulfatase expression in human breast cancer.Breast Cancer 6: 298–300, 1999.PubMedCrossRefGoogle Scholar
  31. 31).
    Sasano H, Ozaki M: Aromatase expression and its localization in human breast cancer.J Steroid Biochem Mol Biol 61: 293–298, 1997.PubMedCrossRefGoogle Scholar
  32. 32).
    Sasano H and Murakami H: Immunolocalization of aromatase in human breast disorders using different antibodies.Breast Cancer Res Treat 49 (Supple): 79–84, 1998.CrossRefGoogle Scholar
  33. 33).
    Michael MD, Kilgore MW, Morohashi K,et al: Ad4BP/SF-l regulates cyclic AMP-induced transcription from the proximal promoter (PII) of the human aromatase P450 (CYP19) gene in the ovary.J Biol Chem 270: 13561–13566, 1995.PubMedCrossRefGoogle Scholar
  34. 34).
    Okubo T, Thong KT, Bin Y,et al: Down-regulation of promoter 1.3 activity of the human aromatase gene in breast tissue by zinc-finger protein, snail SnaH.Cancer Res 61: 1338–1346, 2001.PubMedGoogle Scholar
  35. 35).
    Agarwal VR, Bulun SE, Leitch M,et al: Use of alternative promoters to express the aromatase cytochrome P450 (CYP19) gene in breast adipose tissues of cancer free and breast cancer patients. /Clin Endocrinol Metab 81: 3843–3849, 1996.CrossRefGoogle Scholar
  36. 36).
    Zhao Y, Agarwar VR, Mendelson CR,et al: Transcriptional regulation of CYP19 (aromatase) expression in adipose stromal cells in primary culture.J Steroid Biohem Mol Biol 61: 203–210, 1997.CrossRefGoogle Scholar
  37. 37).
    Chen S, Zhou D, Okubo T,et al: Breast tumor aromatase: functional role and transcriptional regulation.EndocrRelat Cancer 6: 149–156, 1999.CrossRefGoogle Scholar
  38. 38).
    Watanabe T, Yasuda T, Noda H,et al: Estrogen secreting adrenal adenocarcinoma in an 18-month-old boy: aromatase activity, protein expression, mRNA and utilization of gonadal type promoter.Endocr J 47: 723–730, 2000.PubMedCrossRefGoogle Scholar
  39. 39).
    Chen S, Zhou D, Yang C,et al: Modulation of aromatase expression in human breast tissue.J Steroid Biohem Mol Biol 79: 35–40, 2001.CrossRefGoogle Scholar
  40. 40).
    Zhao Y, Agarwal VR, Mendelson CR,et al: Estrogen biosynthesis proximal to a breast tumor is stimulated by PGE2 via cyclic AMP, leading to activation of promoter II of the CYP 19 (aromatase) gene.Endocrinology 137: 5739–5742, 1996.PubMedCrossRefGoogle Scholar
  41. 41).
    Keshava N, Mandava U, Kirma N,et al: Acceleration of mammary neoplasia in aromatase transgenic mice by 7, 12-dimethylbenz[a]anthracene.Cancer Lett 167: 125–133, 2001.PubMedCrossRefGoogle Scholar
  42. 42).
    Miyoshi Y, Ando A, Shiba E,et al: Involvement of upregulation of 17β-hydroxysteroid dehydrogenase type 1 in maintenance of intratumoral high estradiol levels in postmenopausal breast cancers.Int J Cancer 94: 685–689, 2001.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Breast Cancer Society 2002

Authors and Affiliations

  1. 1.Japanese Breast Cancer SocietyJapan

Personalised recommendations