A mixed-mode BIST scheme based on folding compression

  • Liang Huaguo 
  • Sybille Hellebrand
  • Hans-Joachim Wunderlich


In this paper a new scheme for mixed mode scan-based BIST is presented with complete fault coverage, and some new concepts of folding set and computing are introduced. This scheme applies single feedback polynomial of LFSR for generating pseudo-random patterns, as well as for compressing and extending seeds of folding sets and an LFSR, where we encode seed of folding set as an initial seed of LFSR. Moreover these new techniques are 100% compatible with scan design. Experimental results show that the proposed scheme outperforms previously published approaches based on the reseeding of LFSRs.

Key words

BIST random pattern testing LFSR folding set encoding seed 


  1. [1]
    Abramovici M, Breuer M, Friedman A. Digital Systems Testing and Testing and Testable Design. New York: Computer Science Press (W. H. Freeman and Co.), 1990.Google Scholar
  2. [2]
    Chen K-T, Lin C-J. Timing driven test point insertion for full-scan and partial-scan BIST. InProceedings IEEE International Test Conference, Washington DC, 1995, pp.506–514.Google Scholar
  3. [3]
    Savaria Y, Yousef M, Kaminska B, Koudil M. Automatic test point insertion for pseudo-random testing. InProceedings of International Symposium on Circuits and Systems, 1991, pp.1960–1963.Google Scholar
  4. [4]
    Williams M J Y, Angell J B. Enhancing testability of large-scale integrated circuits via test points and additional logic.IEEE Transactions on Computers, January, 1973, C-22(1): 46–60.CrossRefGoogle Scholar
  5. [5]
    Brglez Fet al. Hardware-based weighted random pattern generation for boundary-scan. InProceedings of IEEE International Test Conference, Washington DC, 1989, pp.264–274.Google Scholar
  6. [6]
    Strle A, Wunderlich H-J. TESTCHIP: A chip for weighted random pattern generation, evaluation, and test control. InIEEE Journal of Solid State Circuits, July, 1991, 26(7): 1056–1063.Google Scholar
  7. [7]
    Tsai K-H, Hellebrand S, Marek-Sadowska S, Rajski J. STARBIST: Scan autocorrelated random pattern generation. InProceedings of ACM/IEEE Design Automation Conference, Anaheim CA, June 9–13, 1997.Google Scholar
  8. [8]
    Wunderlich H-J. Self test using unequiprobable random patterns. InProc. IEEE 17th International Symposium on Fault-Tolerant Computing, FTCS-17, Pittsburgh, 1987, pp.258–263.Google Scholar
  9. [9]
    Savir J, McAnney William H. A multiple seed linear feedback shift register.IEEE Transactions on Computers, February, 1992, 41(2): 250–252.CrossRefGoogle Scholar
  10. [10]
    Hellebrand S, Rajski J, Tarnick S, Venkataraman S, Courtois B. Built-in test for circuits with scan based on reseeding of multiple-polynomial linear feedback shift registers.IEEE Transactions on Computers, February, 1995, 44(2): 223–233.MATHCrossRefGoogle Scholar
  11. [11]
    Hellebrand S, Reeb B, Tarnick S, Wunderlich H-J. Pattern generation for a deterministic BIST scheme. InProceedings of IEEE/ACM International Conference on CAD-95, San Jose, CA, November, 1995, pp. 88–94.Google Scholar
  12. [12]
    Koenemann B. LFSR-coded test patterns for scan designs. InProceedings of European Test Conference, Munich, 1991, pp.237–242.Google Scholar
  13. [13]
    Touba N A, McCluskey E J. Altering a pseudo-random bit sequence for scan-based BIST. InProceedings of IEEE International Test Conference, Washington DC, 1996, pp.167–175.Google Scholar
  14. [14]
    Kiefer G, Wunderlich H-J. Using BIST control for pattern generation. InProceedings IEEE International Test Conference, Washington DC, November, 1997, pp.347–355.Google Scholar
  15. [15]
    Wunderlich H-J, Kiefer G. Bit-flipping BIST. InProceedings of ACM/IEEE International Conference on CAD-96 (ICCAD96), San Jose, CA, November, 1996, pp.337–343.Google Scholar
  16. [16]
    Chakrabarty K, Murray B T. Design of build-in test generator circuits using width compression.IEEE Trans. CAD, Oct., 1998, 17: 1044–1051.Google Scholar
  17. [17]
    Hellebrand S, Wunderlich H-J, Hertwig A. Mixed-mode BIST using embedded processors.Journal of Electronic Testing: Theory and Applications — JETTA, February/April, 1998, 12(1/2): 127–138.CrossRefGoogle Scholar
  18. [18]
    Breuer M A. Design Automation of Digital Systems. New Jersey: Computer Science Press, 1972.Google Scholar
  19. [19]
    Slavik P. A Tight Analysis of the Greedy Algorithm for Set Cover. In28th Annual ACM STOC’96.Google Scholar
  20. [20]
    Chvatal V. A greedy heuristic for the set-covering problem.Mathematics of Operations Research, 1979, (4): 233–235.MATHMathSciNetCrossRefGoogle Scholar
  21. [21]
    Li Xiaowei, Paul Y S Cheung, Hideo Fujiwara. ’LFSR-based deterministic TPG for two-pattern testing.Journal of Electronic Testing: Theory and Application, Kluwer Academic Publisher, 2000, 16(5): 419–426.CrossRefGoogle Scholar
  22. [22]
    Brglez Fet al. Accelerated ATPG and fault grading via testability analysis. InProceedings IEEE Int. Symp. on Circuits and Systems, Kyoto, 1985.Google Scholar
  23. [23]
    Brglez F, Bryan D, Kozminski K. Combinational profiles of sequential benchmark circuits. InProc. IEEE Int. Symp. on Circuits and Systems, 1989, pp.1929–1934.Google Scholar

Copyright information

© Science Press, Beijing China and Allerton Press Inc. 2002

Authors and Affiliations

  • Liang Huaguo 
    • 1
  • Sybille Hellebrand
    • 2
  • Hans-Joachim Wunderlich
    • 3
  1. 1.Department of Computer and InformationHefei University of TechnologyHefeiP.R. China
  2. 2.Institute of Applied Computer ScienceUniversity of InnsbruckAustria
  3. 3.Institute of Computer ScienceUniversity of StuttgartGermany

Personalised recommendations