Ganglioside GM1 preventsN-methyl-d-aspartate neurotoxicity in rabbit hippocampus in vivo

Effects on calcium homeostasis
  • Jerzy W. Łazarewicz
  • Elżbieta Salińska
  • Ewa Matyja
Original Articles


Microdialysis was used to apply 1 mM N-methyl-d-aspartate (NMDA) for 20 min to the hippocampus of rabbits, control and pretreated with GM1 ganglioside (im injections of 30 mg/kg for 3d, twice a day). Concentrations of ionized Ca2+ and 6-keto prostaglandin F (6-keto PGF)-immunoreactive material in the dialyzates and45Ca and [14C]sucrose efflux from the prelabeled hippocampus were determined. After 24 h, the morphology of the hippocampal neurons was examined. In control animals, the application of NMDA resulted in 25% decrease in Ca2+ concentration and in 1000% increase in 6-keto PGF concentration in the dialyzates. A 30% decrease in45Ca efflux was accompanied by 20% increase in [14C]sucrose efflux, reflecting a corresponding reduction of the extracellular space volume. A degeneration of CA1 pyramidal neurons in the vicinity of a microdialysis probe was observed. In GM1-treated rabbits the NMDA-induced decrease in Ca2+ concentrations in the dialyzates was not reduced significantly, whereas a 70% stimulation of45Ca efflux was noted, with a concomitant 40% reduction of 6-keto-PG F release. NMDA-evoked increase in [14C]sucrose efflux did not differ from the control. In these animals CA1 neurons were well preserved. These results indicate that the pretreatment with GM1 results in activation of calcium extrusion from the NMDA-stimulated rabbit hippocampal neurons that alleviates destabilization of calcium homeostasis and reduces NMDA-evoked neuronal injury.

Index Entries

Calcium GM1 ganglioside hippocampus in vivo study 6-keto prostaglandin F microdialysis morphology NMDA neurotoxicity rabbit sucrose space volume 


  1. Bressler J. P., Belloniolivi L., and Forman S. (1994) Effect of ganglioside GM1 on arachidonic acid release in bovine aortic endothelial cells.Life Sci. 54, 49–60.PubMedCrossRefGoogle Scholar
  2. Choi D. W. (1985) Glutamate neurotoxicity in cortical cell culture is calcium dependent.Neurosci. Lett. 58, 293–297.PubMedCrossRefGoogle Scholar
  3. Choi D. W. (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage.Trends Neurosci. 11, 465–469.PubMedCrossRefGoogle Scholar
  4. Ciardo A. and Meldolesi J. (1991) Regulation of intracellular calcium in cerebellar granule neurons: effects of depolarization and of glutamatergic and cholinergic stimulation.J. Neurochem. 56, 184–191.PubMedCrossRefGoogle Scholar
  5. Contestabile A., Virgili, M., Migani P., and Barnabei O. (1990) Effects of short-and long-term ganglioside treatment on the recovery of neurochemical markers in the ibotenic acid-lesioned rat striatum.Neurosci. Res. 26, 483–487.CrossRefGoogle Scholar
  6. Costa E., Armstrong D., Kharlamov A., and Guidotti A. (1993) Protection against photochemically induced cortical thrombosis by two semisynthetic GM1 lysogangliosides.J. Neurochem. 61, (suppl.), S6C.Google Scholar
  7. Dawson V. L., Dawson T. M., Hung K., Steiner J. P., and Snyder S. H. (1993) Gangliosides attentuate NMDA neurotoxicity by inhibiting nitric oxide synthase.Soc. Neurosci. Abstr. 19, 25 (#18.3).Google Scholar
  8. Favaron M., Manev H., Alho H., Bertolino M., Ferret B., Guidotti A., and Costa E. (1988) Gangliosides prevent glutamate and kainate neurotoxicity in primary neuronal cultures of neonatal rat cerebellum and cortex.Proc. Natl. Acad. Sci. USA 85, 7351–7355.PubMedCrossRefGoogle Scholar
  9. Fukuda A. and Prince D. A. (1992) Excessive intracellular Ca2+ inhibits glutamate-induced Na+−K+ pump activation in rat hippocampal neurons.J. Neurophysiol. 68, 28–35.PubMedGoogle Scholar
  10. Garthwaite J., Charles S. L., and Chess-Williams R. (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intracellular messenger in the brain.Nature 336, 385–388.PubMedCrossRefGoogle Scholar
  11. Guerold B., Massarelli R., Forster V., Freysz L., and Dreyfus H. (1992) Exogenous gangliosides modulate calcium fluxes in cultured neuronal cells.J. Neurosci. Res. 32, 110–115.PubMedCrossRefGoogle Scholar
  12. Guidotti A., de Erausquin G., Brooker G., Favaron M., Manev H., and Costa E. (1991) Receptor-abuse dependent antagonism. A new strategy in drug targeting for excitatory amino acid-induced neurotoxicity, inExcitatory Amino Acids (Meldrum B. S., Moroni F., Simon R. P., and Woods J. A., eds.), pp. 635–646, Raven, New York.Google Scholar
  13. Hadjiconstantinou M., Yates A. J., and Neff N. (1990) Hypoxia-induced neuro-transmitter deficits in neonatal rats are partially corrected by exogenous GM1 ganglioside.J. Neurochem. 55, 864–869.PubMedCrossRefGoogle Scholar
  14. Hamberger A., Jacobson I., Molin S-O., Nystrom B., Sandberg M., and Ungerstedt U. (1982) Metabolic and transmitter compartments for glutamate, inNeurotransmitter Interaction and Compartmentation (Bradford H. F., ed.), pp. 359–378, Plenum, New York.Google Scholar
  15. Hamon B. and Heinemann U. (1986) Effects of GABA and bicuculline onN-methyl-d-aspartate and quisqualate-induced reductions in extracellular free calcium in area CA1 of the hippocampal slice.Exp. Brain Res. 64, 27–36.PubMedCrossRefGoogle Scholar
  16. Higashi H., Omori A., and Yamagata T. (1992) Calmodulin, a ganglioside-binding protein. Binding of gangliosides to calmodulin in the presence of calcium.J. Biol. Chem. 267, 9831–9838.PubMedGoogle Scholar
  17. Karpiak S. E., Mahadik S. P., and Wakade C. G. (1990) Ganglioside reduction of ischemic injury.Crit. Rev. Neurobiol. 5, 221–237.PubMedGoogle Scholar
  18. Karpiak S. E., Ortiz A., Wakade C. G., Hernandez N., Durkin M., Barkai A. I., and Mahadik S. P. (1991) Primary and secondary injury processes in stroke: High45Ca2++ levels and Ca2++-ATPase losses reduced by GM1 ganglioside.Abstr. Soc. Neurosci. 16, 278.Google Scholar
  19. Katayama T., Tamura T., Becker D. P., and Tsubokawa T. (1992) Early cellular swelling during cerebral ischemiain vivo is mediated by excitatory amino acids released from nerve terminals.Brain Res. 577, 121–126.PubMedCrossRefGoogle Scholar
  20. Laev H., Mahadik S. P., Bonheur J. L., Hernandez N., and Karpiak S. E. (1993) GM1 ganglioside reduces glutamate toxicity to cortical cells. Lowered LDH release and preserved membrane integrity.Mol. Chem. Neuropathol. 20, 229–243.PubMedCrossRefGoogle Scholar
  21. Łazarewicz J. W., Hagberg H., and Hamberger A. (1986) Extracellular calcium in the hippocampus of unanesthetized rabbit monitored with dialysis-perfusion.J. Neurosci. Meth. 15, 317–328.CrossRefGoogle Scholar
  22. Łazarewicz J. W. and Salińska E. (1993) Role of calcium in glutamate-mediated toxicity: mechanisms of calcium fluxes in rabbit hippocampusin vivo investigated with microdialysis.Acta Neurobiol. Exp. 53, 3–13.Google Scholar
  23. Łazarewicz J. W., Wroblewski J. T., and Costa E. (1990)N-methyl-d-aspartatesensitive glutamate receptors induce calcium-mediated arachidonic acid release in primary cultures of cerebellar granule cells.J. Neurochem. 55, 1875–1881.PubMedCrossRefGoogle Scholar
  24. Lipartiti M., Lazzero A., Zanoni R., Mazzari S., Toddano G., and Leon A. (1991) Monosialoganglioside GM1 reduces NMDA neurotoxicity in neonatal rat brain.Exp. Neurol. 113, 301–305.PubMedCrossRefGoogle Scholar
  25. Lombardi G., Zanoni R., and Moroni F. (1989) Systemic treatments with GM1 ganglioside reduce quinolinic acid-induced striatal lesions in the rat.Eur. J. Pharmacol. 174, 123–125.PubMedCrossRefGoogle Scholar
  26. Manev H., Favaron M., Vicini S., Guidotti A., and Costa E. (1990) Glutamate-induced neuronal death in primary cultures of cerebellar granule cells: protection by synthetic derivatives of endogenous sphingolipids.J. Pharmacol. Exp. Ther. 252, 419–427.PubMedGoogle Scholar
  27. Manev H., Favaron M., Guidotti A., and Costa E. (1989) Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death.Mol. Pharmacol. 36, 106–112.PubMedGoogle Scholar
  28. Mahadik S. P., Hawver D. B., Hungund B. L., Li Y. S., and Karpiak S. E. (1989) GM1 ganglioside treatment after global ischemia protects changes in membrane fatty acids and properties of Na+, K+-ATPase, and Mg2+-ATPase.J. Neurosci. Res. 24, 402–412.PubMedCrossRefGoogle Scholar
  29. Matsuda T., Shimizu I., Murata Y., and Baba A. (1992) Glucose and oxygen deprivation induces a Ca2+-mediated decrease in (Na++K+)-ATPase activity in rat brain slices.Brain Res. 576, 263–270.PubMedCrossRefGoogle Scholar
  30. Mayer M. L. and Westbrook G. L. (1987) Permeation and block ofN-methyl-d-aspartic acid receptor channels by divalent cations in mouse cultured central neurons.J. Physiol. 394, 500–527.Google Scholar
  31. McDonald J. W., Silverstein F. S., and Johnston M. V. (1988) Neurotoxicity ofN-methyl-d-aspartate is markedly enhanced in developing rat central nervous system.Brain Res. 459, 200–203.PubMedCrossRefGoogle Scholar
  32. Monaghan D. T. and Cotman C. W. (1985) Distribution of NMDA-sensitivel-[3H]glutamate binding sites in rat brain as determined by quantitative autoradiography.J. Neurosci. 5, 2909–2919.PubMedGoogle Scholar
  33. Petroni A., Bertazzo A., Sarti S., and Galli C. (1989) Accumulation of arachidonic acid cyclo- and lipoxygenase products in rat brain during ischemia and reperfusion: Effects of treatment with GM1-lactone.J. Neurochem. 53, 747–752.PubMedCrossRefGoogle Scholar
  34. Salvemini D., Misko T. P., Masferrer J. L., Seibert K., Currif M. G., and Needleman P. (1993) Nitric oxide activates cyclooxygenase enzymes.Proc. Natl. Acad. Sci. USA 90, 7240–7244.PubMedCrossRefGoogle Scholar
  35. Siesjö B. K., Katsura K., Pahlmark K., and Smith M-L. (1992) The multiple causes of ischemic brain damage: a speculative synthesis, inPharmacology of Cerebral Ischemia (Krieglstein J. and Oberpichler-Schwenk H., eds.), pp. 511–525, Wissenschaftliche Verlagsgesellschaft, Stuttgart.Google Scholar
  36. Skaper S. D., Facci L., Milani D., and Leon A. (1989) Monosialoganglioside GM1 protects against anoxia-induced neuronal deathin vitro.Exp. Neurol. 106, 297–305.PubMedCrossRefGoogle Scholar
  37. Steward G. R., Price R., Olney J. W., Hartman B. K., and Cozzari C. (1986)N-methylaspartate, an effective tool for lesioning basal forebrain cholinergic neurons of the rat.Brain Res. 369, 377–382.CrossRefGoogle Scholar
  38. Wendland B., Schweizer F. E., Ryan T. A., Nakane M., Murad F., Scheller R. H., and Tsien R. W. (1994) Existence of nitric oxide synthase in rat hippocampal pyramidal cells.Proc. Natl. Acad. Sci. USA 91, 2151–2155.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1995

Authors and Affiliations

  • Jerzy W. Łazarewicz
    • 1
  • Elżbieta Salińska
    • 1
  • Ewa Matyja
    • 2
  1. 1.Department of Neurochemistry, Medical Research CentrePolish Academy of SciencesWarsawPoland
  2. 2.Department of Neuropathology, Medical Research CentrePolish Academy of SciencesWarsawPoland

Personalised recommendations