Distribution of ionospheric O+ ion in synchronous altitude region

  • Jiankui Shi 
  • Zhenxing Liu 
  • Zhang T. L. 
  • Jianshan Guo 
  • Manlian Zhang 
  • Sheping Shang 
  • Xigui Luo 


Based on satellite observation data, using dynamics equation, the ionospheric O+ ion’s distribution in the synchronous altitude region for different geomagnetic activity indexK p is studied by theoretical modeling and numerical analyzing, and semi-empirical models for the O+ ion’s density and flux versus longitude in the synchronous altitude region for differentK p are given. The main results show that in the synchronous altitude region: (i) The O+ ion’s density and flux in day-side are larger than those in nightside. (ii) With longitude changing, the higher the geomagnetic activity indexK p is, the higher the O+ ion’s density and flux, and their variation amplitude will be. The O+ ion’s density and flux whenK p 6 will be about ten times as great as that whenK p = 0. (iii) WhenK p = 0 orK p 6, the O+ ion’s density reaches maximum at longitudes 120° and 240° respectively, and minimum in the magnetotail. WhenK p = 3−5, the O+ ion’s density gets to maximum at longitude 0°, and minimum in the magnetotail. However, the O+ ion’s flux reaches maximum at longitude 120° and 240° respectively, and minimum in the magnetotail for anyK p value.


ionospheric O+ ion synchronous altitude longitude distribution features 


  1. 1.
    Shelley, E. G., Johnson, R. G., Sharp, R. D., Satellite observations of energetic heavy ions during a geomagnetic storm, J. Geophys. Res., 1972, 77(31): 6104–6110.CrossRefGoogle Scholar
  2. 2.
    Moore, T. E., Origing of Magnetospheric Plasma, Rev. Geophys., Suppl., 1991, (29): 1039–1048.Google Scholar
  3. 3.
    Jiao Wenxin, Pu Zuyin, A physics mechanics for charging inside of the spacecraft, Science in China (in Chinese), Ser. A, 2000, 30(supp.): 136–139.Google Scholar
  4. 4.
    Sharp, R. D., Lennartsson, W., Peterson, W. K. et al., The origin of the plasma in the distant plasma sheet, J. Geophys. Res., 1982, 87(A12): 10420–10424.CrossRefGoogle Scholar
  5. 5.
    Lennartsson, W., Dynamical features of the plasma sheet ion composition, density, and energy, in Magnetotail Physics (ed. Liu, T. Y.), Baltimore: Johns Hopkins University Press, 1987, 35–55.Google Scholar
  6. 6.
    Horwitz, J. L., Lockwood, M., Waiter, J. H. et al., Transport of accelerated low-energy ions in the polar magnetosphere, in Magnetotail Physics (ed. Liu, T. Y.), Baltimore: Johns Hopkins University Press, 1987, 56–60.Google Scholar
  7. 7.
    Delcourt, D. C., Chappell, C. R., Moore, T. E. et al., A three-dimensional numerical model of ionospheric plasma in the magnetosphere, J. Geophys. Res., 1989, 94(A9): 11893–11920.CrossRefGoogle Scholar
  8. 8.
    Delcourt, D. C., Sauvaud, J. A., Pedersen, A., Dynamics of single particle orbits during substorm expansion phase, J. Geophys. Res., 1990, 95(A12): 20853–20865.CrossRefGoogle Scholar
  9. 9.
    Cladis, J. B., Francic, W. E., Distribution in magnetotail of O+ ions from Cusp/Cleft ionosphere: Possible substorm trigger, J. Geophys. Res., 1992, 97(A1): 123–131.CrossRefGoogle Scholar
  10. 10.
    Shi Jiankui, Liu Zhenxing, Pu Zuyin, Theoretical study on the flux of up-flowing ion in the magnetosphere, Chinese Journal of Space Science (in Chinese), 1996, 16: 187–192.Google Scholar
  11. 11.
    Shi Jiankui, Liu Zhenxing, Theoretical distribution of up-flowing ions in the magnetosphere, Adv. Space Res., 1999, 24(1): 125–128.CrossRefGoogle Scholar
  12. 12.
    Shi Jiankui, Liu Zhenxing, Zhang, T. L. et al., Acceleration of ionospheric out-flowing ions in the substorm in geo-magnetotail, Chin. Phys. Lett., 1999, 16(12): 908–910.CrossRefGoogle Scholar
  13. 13.
    Pu Zuyin, Lui Zhenxing, Wang Yuandian, The dynamics equation of guiding center and its application in spacer physics, Chinese Journal Geophysics (in Chinese), 1981, 24: 372–384.Google Scholar
  14. 14.
    Eviater, A., Lencheek, A. M., Singer, S. F., Distribution of density in an ion-exosphere of a nonrotating planet, Phys. Fluids, 1964, 7: 1775–1779.CrossRefGoogle Scholar
  15. 15.
    Shi Jiankui, Liu Zhenxing, Zhang, T. L. et al., Influence of the solar wind on O+ ion’s distribution in martian magnetosphere, Science in China, Ser. E, 2001, 44(6): 421–426.Google Scholar
  16. 16.
    Mead, G. D., Fairfield, D. H., A quantitative magnetospheric model derived from spacecraft magnetometer data, J. Geophys. Res., 1975, 80(4): 523.CrossRefGoogle Scholar
  17. 17.
    Xu Wenyao, Wei Zhigang, Reversed polarity patch on the CMB and geomagnetic field reversal, Science in China, Ser. D, 2002, 45(6): 540–549.CrossRefGoogle Scholar
  18. 18.
    Yau, A. W., Lockwood, M., Vertical ion flow in the polar ionosphere, in Modeling Magnetospheric Plasma, Geophys. Mono (eds. Moore, T. E., Waite, J. H., Jr.), Series 44, Washington DC: AGU, 1998, 229–237.Google Scholar

Copyright information

© Science in China Press 2003

Authors and Affiliations

  • Jiankui Shi 
    • 1
  • Zhenxing Liu 
    • 1
  • Zhang T. L. 
    • 2
  • Jianshan Guo 
    • 1
  • Manlian Zhang 
    • 1
  • Sheping Shang 
    • 1
  • Xigui Luo 
    • 1
  1. 1.Center for Space Science and Applied ResearchChinese Academy of SciencesBeijingChina
  2. 2.Space Research InstituteAustrian Academy of SciencesGraz

Personalised recommendations