Skip to main content
Log in

Distribution of ionospheric O+ ion in synchronous altitude region

  • Published:
Science in China Series D: Earth Sciences Aims and scope Submit manuscript

Abstract

Based on satellite observation data, using dynamics equation, the ionospheric O+ ion’s distribution in the synchronous altitude region for different geomagnetic activity indexK p is studied by theoretical modeling and numerical analyzing, and semi-empirical models for the O+ ion’s density and flux versus longitude in the synchronous altitude region for differentK p are given. The main results show that in the synchronous altitude region: (i) The O+ ion’s density and flux in day-side are larger than those in nightside. (ii) With longitude changing, the higher the geomagnetic activity indexK p is, the higher the O+ ion’s density and flux, and their variation amplitude will be. The O+ ion’s density and flux whenK p 6 will be about ten times as great as that whenK p = 0. (iii) WhenK p = 0 orK p 6, the O+ ion’s density reaches maximum at longitudes 120° and 240° respectively, and minimum in the magnetotail. WhenK p = 3−5, the O+ ion’s density gets to maximum at longitude 0°, and minimum in the magnetotail. However, the O+ ion’s flux reaches maximum at longitude 120° and 240° respectively, and minimum in the magnetotail for anyK p value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shelley, E. G., Johnson, R. G., Sharp, R. D., Satellite observations of energetic heavy ions during a geomagnetic storm, J. Geophys. Res., 1972, 77(31): 6104–6110.

    Article  Google Scholar 

  2. Moore, T. E., Origing of Magnetospheric Plasma, Rev. Geophys., Suppl., 1991, (29): 1039–1048.

    Google Scholar 

  3. Jiao Wenxin, Pu Zuyin, A physics mechanics for charging inside of the spacecraft, Science in China (in Chinese), Ser. A, 2000, 30(supp.): 136–139.

    Google Scholar 

  4. Sharp, R. D., Lennartsson, W., Peterson, W. K. et al., The origin of the plasma in the distant plasma sheet, J. Geophys. Res., 1982, 87(A12): 10420–10424.

    Article  Google Scholar 

  5. Lennartsson, W., Dynamical features of the plasma sheet ion composition, density, and energy, in Magnetotail Physics (ed. Liu, T. Y.), Baltimore: Johns Hopkins University Press, 1987, 35–55.

    Google Scholar 

  6. Horwitz, J. L., Lockwood, M., Waiter, J. H. et al., Transport of accelerated low-energy ions in the polar magnetosphere, in Magnetotail Physics (ed. Liu, T. Y.), Baltimore: Johns Hopkins University Press, 1987, 56–60.

    Google Scholar 

  7. Delcourt, D. C., Chappell, C. R., Moore, T. E. et al., A three-dimensional numerical model of ionospheric plasma in the magnetosphere, J. Geophys. Res., 1989, 94(A9): 11893–11920.

    Article  Google Scholar 

  8. Delcourt, D. C., Sauvaud, J. A., Pedersen, A., Dynamics of single particle orbits during substorm expansion phase, J. Geophys. Res., 1990, 95(A12): 20853–20865.

    Article  Google Scholar 

  9. Cladis, J. B., Francic, W. E., Distribution in magnetotail of O+ ions from Cusp/Cleft ionosphere: Possible substorm trigger, J. Geophys. Res., 1992, 97(A1): 123–131.

    Article  Google Scholar 

  10. Shi Jiankui, Liu Zhenxing, Pu Zuyin, Theoretical study on the flux of up-flowing ion in the magnetosphere, Chinese Journal of Space Science (in Chinese), 1996, 16: 187–192.

    Google Scholar 

  11. Shi Jiankui, Liu Zhenxing, Theoretical distribution of up-flowing ions in the magnetosphere, Adv. Space Res., 1999, 24(1): 125–128.

    Article  Google Scholar 

  12. Shi Jiankui, Liu Zhenxing, Zhang, T. L. et al., Acceleration of ionospheric out-flowing ions in the substorm in geo-magnetotail, Chin. Phys. Lett., 1999, 16(12): 908–910.

    Article  Google Scholar 

  13. Pu Zuyin, Lui Zhenxing, Wang Yuandian, The dynamics equation of guiding center and its application in spacer physics, Chinese Journal Geophysics (in Chinese), 1981, 24: 372–384.

    Google Scholar 

  14. Eviater, A., Lencheek, A. M., Singer, S. F., Distribution of density in an ion-exosphere of a nonrotating planet, Phys. Fluids, 1964, 7: 1775–1779.

    Article  Google Scholar 

  15. Shi Jiankui, Liu Zhenxing, Zhang, T. L. et al., Influence of the solar wind on O+ ion’s distribution in martian magnetosphere, Science in China, Ser. E, 2001, 44(6): 421–426.

    Google Scholar 

  16. Mead, G. D., Fairfield, D. H., A quantitative magnetospheric model derived from spacecraft magnetometer data, J. Geophys. Res., 1975, 80(4): 523.

    Article  Google Scholar 

  17. Xu Wenyao, Wei Zhigang, Reversed polarity patch on the CMB and geomagnetic field reversal, Science in China, Ser. D, 2002, 45(6): 540–549.

    Article  Google Scholar 

  18. Yau, A. W., Lockwood, M., Vertical ion flow in the polar ionosphere, in Modeling Magnetospheric Plasma, Geophys. Mono (eds. Moore, T. E., Waite, J. H., Jr.), Series 44, Washington DC: AGU, 1998, 229–237.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiankui Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiankui, S., Zhenxing, L., Zhang, T.L. et al. Distribution of ionospheric O+ ion in synchronous altitude region. Sci. China Ser. D-Earth Sci. 46, 986–993 (2003). https://doi.org/10.1007/BF02959393

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02959393

Keywords

Navigation